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The pervasiveness of computer use

Increase in computer use 

Ever since the introduction of the personal computer, our daily lives are infl uenced 

more and more by computers. A day in the life of a PhD-student illustrates this: 

“At the breakfast table, I check my e-mail to see if the meeting later that day 

has been confi rmed, and I check the time table of the train to Rotterdam. In the 

train, I might check the latest news on my mobile phone with internet access 

and from the moment I enter the offi  ce to the moment I leave, 95% of the work 

I perform involves computer work. I spend my day reading and writing articles, 

searching information online, keeping in contact with fellow researchers and per-

forming data analyses. At the end of the afternoon, I check the computer data 

fi les from study participants that have automatically been sent to us by means of 

the university network. Back home, I buy tickets for a music festival online, and 

stream the TV program I missed the night before from my laptop to the television. 

While I’m lying in bed, I just send a quick message to a friend on MSN with my 

laptop, and with that, another computer-fi lled day has ended.”

Th e rise of IT (information technology, which refers both to devices that 

have digital technology built in and to software that is implemented in those 

devices) has led to a massive change in the working process and working condi-

tions since the 1960’s. Th is impact has only been matched by the fi rst and second 

industrial revolutions (Fourth European Working Conditions Survey 2005). A 

large IT research company stated that during the summer of 2008, the number 

of personal computers in use had surpassed 1 billion units, with the expectancy 

of another billion unit increase already in 2014 (Gartner 2008). 
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Diff erences between countries

In 2003, 56% of all American employees used a computer at work (Hipple and 

Kosanovich 2003). In 1990, around 13% of workers across Europe worked with 

computers (nearly) all the time, and this number even increased to 26% in 2005. 

In Figure 1.1, the 15 countries are shown with the highest number of PCs in use 

in 2008. Not surprisingly, the USA tops the list with a market share of 22%, which 

is more than twice as high as China (8%). Th e USA has led the ranks since the 

start of the survey in 1993, while China didn’t appear in the top-15 until 2000. 

Th e Netherlands were initially in the list, but disappeared from the top-15 in 2005.

Relationship with complaints of the upper extremity 

Epidemiological evidence has shown that computer-based work is an important 

risk factor for the development of upper body musculoskeletal symptoms and 

disorders (Griffi  ths et al. 2007, Village et al. 2006). A range of diff erent terms, like 

Figure 1.1: Top 15 countries of PCs in use in 2008 (Source: Computer Industry Almanac, 
www.c-i-a.com)
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repetitive strain injury (RSI), cumulative trauma disorder (CTD), complaints of 

arm, neck and/or shoulder (CANS) and musculoskeletal complaints (MSC) is used 

to describe these symptoms and disorders. In this dissertation, the term CANS 

will be used (Huisstede 2007), which is defi ned as ‘musculoskeletal complaints of 

arm, neck and/or shoulder not caused by acute trauma or by any systemic disease’ 

(Huisstede et al. 2007). Some of the related complaints include pain, stiff ness, 

tingling or loss of strength or coordination, all of which can occur in the neck, 

shoulders, arms, wrists and hands (Health Council of the Netherlands 2000). 

CANS are divided in specifi c and non-specifi c conditions. Th ere are 23 

specifi c forms of CANS, including carpal tunnel syndrome, lateral epicondylitis 

and rotator cuff  tears (Huisstede et al. 2007). However, 73 to 87% of all muscu-

loskeletal complaints cannot be diagnosed as one of these specifi c disorders, in 

which case the complaints are called non-specifi c. In this dissertation, we will 

only focus on non-specifi c CANS, which aff ects many people.  Surprisingly, the 

underlying mechanisms are still poorly understood, despite a large amount of 

research (Burdorf and van der Beek 1999a, Visser and van Dieën 2006). Factors 

of physical, psychosocial and individual origin are thought to be involved in the 

onset of CANS, which indicates that CANS have a multi-factorial origin (Health 

Council of the Netherlands 2000, Staal et al. 2007). Th e occurrence of CANS 

is high, although it has remained stable over the past years (in 2000 as well as 

in 2007, 27% of the Dutch working population experienced CANS (Heinrich 

and Blatter 2005, Arbobalans 2007–2008). Episodes of CANS may be diffi  cult 

to capture, since the course of CANS demonstrates a highly dynamic pattern 

with a high recurrence rate (Luime et al. 2005). Th is means that complaints may 

fl are up or disappear within relatively short periods of time. Furthermore, CANS 

may require a certain induction time of exposure and a latency time before the 

onset of symptoms (Hakkanen et al. 2001), thus making it diffi  cult to choose an 

appropriate monitoring period. 

Although CANS does not only occur in professions with intensive computer 

use, computer work is performed by a large percentage of the total work force, and 
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the number of employees working most of their working hours with a computer 

is high and still increasing (Heinrich and Blatter 2005). Th erefore, the focus of 

this dissertation will be on offi  ce workers in the administrative sector.

Th e relationship between computer use and CANS has been much debated 

over the years. Much attention is given to which aspects of computer use might 

pose a threat, how to alleviate risks and which interventions are most eff ective 

in primary and secondary prevention of CANS. Th e biomechanical risk factors 

related to computer work have been well established and include prolonged peri-

ods of low-intensity work with sustained static muscle activity in the neck, shoul-

der and arm (Griffi  ths et al. 2007, IJmker et al. 2007). Furthermore, repetitive 

movements of the fi ngers and wrists when operating a keyboard or mouse, as 

well as high precision demands in work tasks have been suggested as computer-

related risk factors (Bernard and Fine 1997, Health Council of the Netherlands 

2000, Huysmans 2008, Visser and van Dieën 2006). Besides physical risk factors, 

psychosocial and individual risk factors have been found to be related to CANS 

as well, such as stress, high job demands, low job satisfaction, low task variation, 

non-work-related stress, female gender and higher age (Bongers et al. 2002, van 

den Heuvel et al. 2006, Gerr et al. 2002). 

However, only few longitudinal fi eld studies have been performed in com-

puter users, meaning that the current knowledge of risk factors for CANS relies 

mainly on laboratory studies and cross-sectional fi eld studies (IJmker et al. 2007). 

Th e main disadvantage of cross-sectional studies is that it is unknown if risk factors 

cause CANS, or that people with CANS sybsequently alter their behaviour in order 

to avoid pain or discomfort. Furthermore,  laboratory studies have the advantage 

of a high level of control over the experimental conditions and the surroundings, 

but they usually have a limited amount of participants and measurements and 

they may involve exposure to risk that is not representative of typical exposure in 

workplaces. For example, lab tasks may have a simplifi ed set-up, making extrapo-

lation to the complex workplace setting unvalid (e.g. in lab studies, participants 

are often restricted in the allowed tasks or postures). 



Chapter 1

12

1
Scientists agree that the description of exposure variables should include the 

three principle dimensions that express exposure: (1) the exposure level, (2) the 

temporal pattern of exposure delivery (for instance repetitiveness) and (3) expo-

sure duration (Winkel and Westgaard 1992). However, epidemiologic studies on 

computer use tend to focus on only one dimension, that is: exposure duration 

(review: IJmker et al. 2007). Moreover, postures, loads and their time aspects 

are, in general, superfi cially described in the investigated job (Mathiassen 2006). 

Finally, many sources of exposure variability exist in occupational work tasks; vari-

ability associated with the performance of each specifi c task in the job (within-task 

variability), variability due to diff erent tasks having diff erent exposure profi les 

(between-task variability) and variability caused by diff erences in exposure between 

people (between-subject variability or between groups of people (Loomis and 

Kromhout 2004). As an example, Figure 1.2 shows diff erent sources of variability 

for the proportion of keyboard use in total computer use for four offi  ce workers. 

Diff erent professions include diff erent intensities of keyboard use, but for some 

job functions, between-day variability in proportion of keyboard use is higher than 

for other functions. Information on the level of variability of physical exposure 

has so far been scarce in occupational epidemiologic studies on computer use 

(Mathiassen 2006), while at the same time, little is known on how these sources 

of variability infl uence exposure measurements (Loomis and Kromhout 2004). 

In conclusion, information on the appropriate methods and measures of 

quantifying physical exposure during computer use is lacking from the present 

literature. As a consequence, a gap exists in the knowledge on which exposure  

variables might play a role in CANS.

The aim of the current dissertation 
is to describe patterns of 

computer use and provide suggestions how these 
patterns might be related to CANS (complaints of 
the arm, neck and/or shoulder). 
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In this dissertation, analyses and results are presented from a longitudinal 

study on 571 offi  ce workers from the Erasmus MC in Rotterdam, the Netherlands. 

We studied patterns of computer use by following participants for two years and 

monitoring them by means of registration software and questionnaires. With 

custom-built registration software that registered mouse and keyboard use with 

high temporal resolution (10 Hz) we were able to unobtrusively capture natural 

computer use of offi  ce workers for an extended period of time. Furthermore, in 

a subgroup of the total research population, we were able to measure (variability 

in) muscle activity during natural offi  ce work for a whole working day.

Registration software as exposure measurement 
technique

Since about a decade, there has been incredible progress in computer processing 

speed, working capacity and reliability. Th anks to this improvement, the computer 

Figure 1.2: Diff erent sources of exposure variability in offi  ce workers on consecutive work days.
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itself has transformed into a powerful measuring and recording tool for ergonom-

ics-related studies (Chang et al. 2004). For these reasons, epidemiologic studies are 

increasingly using registration software to quantify exposure during computer use. 

Th is gives researchers a chance to quantify computer use patterns, since registration 

software has made it possible to collect data across a large number of computer 

users over an extensive period of time (e.g. Andersen et al. 2008, Chang et al. 

2007, IJmker et al. 2006). Moreover, registration software runs in the background, 

and is therefore unlikely to infl uence participants’ natural computer behaviour. 

Registration software measures input device use, such as keyboard strokes, mouse 

clicks, mouse movements and mouse scroll wheel use. However, although registra-

tion software gives an objective measure for input device use, software cannot tell 

anything about what the person was doing in the time between the moments the 

input devices were used, like sitting behind the screen (and looking) and other 

close to ‘computer use’-related behaviour. 

Because registration software logs input device use by registering single 

events (a click, a key stroke, a change in cursor coordinates), which do not have 

a particular duration themselves, it is impossible to calculate total computer use 

duration. For this reason, a non-computer threshold (NCT) is commonly used 

to estimate computer use duration, which tells how far two computer events can 

be separated in time, while the time between is still classifi ed as uninterrupted 

computer use (from here on referred to as an episode of CW (computer work)). 

Th e time in between events that exceeds the NCT is called non-computer work 

(NCW). Figure 1.3 shows how episodes of CW and NCW are classifi ed with this 

method and that the total duration of computer use (the sum of all episodes of 

CW) depends on the choice of the NCT.

A few validation studies combined computer use duration from registration 

software with duration from observation and found that using a NCT of 20 to 30 

seconds showed reasonable correspondence in work duration (Heinrich et al. 2004, 

Homan and Armstrong 2003). However, this only indicates that the total sum of 

all CW episodes in registration software is equal to that of observation data, but 
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gives no information on the computer use pattern throughout the day. Moreover, 

these studies only used a limited number of computer users, so which NCT is best 

used to describe exposure is still unknown. In the studies mentioned above, no 

diff erences in user groups were made, while diff erences in exposure could lead to 

exposure measurement error and group misclassifi cation (Loomis and Kromhout 

2004). Th e research questions that will be answered in Chapter 2 are: “What is 

the relationship between the non-computer threshold (NCT) used and the duration 

of computer use? Is this relationship diff erent for diff erent groups of computer users?”

Other methods for exposure assessment during 
computer work

Before the introduction of registration software, ergonomists mostly used (video) 

observation and questionnaires to assess exposure during computer use (for an 

overview, see Homan and Armstrong 2003). Self-reported questionnaires are easy 

and cheap to use in large populations, but  the validity and accuracy for estimating 

physical exposure at work has been questioned (Burdorf and van der Beek 1999b, 

David 2005, IJmker et al. 2007, Stock et al. 2005). For example, studies comparing 

work duration estimated by self-administered questionnaires with work duration 

Computer events

NCT 10 s

NCT 30 s

1 2 3 4 5 6 time (minutes)

CW NCW

Figure 1.3: Timeline of single, discrete computer events (top line), and the resulting episodes of 
computer work (CW) and non-computer work (NCW) using non-computer work thresholds (NCT) 
of 10 s and 30 s. 
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measured by external observers show that participants tend to overestimate the 

time they work with the computer (Faucett and Rempel 1996, Heinrich et al. 2004, 

Homan and Armstrong 2003, Lassen et al. 2005, Van der Beek and Frings-Dresen 

1998). Furthermore, exposure assessment by means of (video) observation is prone 

to within- and between-observer variability (David 2005). 

Measurements can be infl uenced by two types of measurement error: system-

atic error and random error. Systematic errors lead to results or readings which are 

consistently too high or too low, and are caused by a bias of a measurement system 

or estimate method. On the other hand, random errors are random fl uctuations 

or measurement errors that are scattered around the true value. Random errors 

are reduced when an experiment is repeated, whereas the level of systematic error 

will remain constant. Th erefore, in order to assess the presence of systematic bias, 

repeated measurements have to be conducted, and to our knowledge, no cross-

validation studies have done this so far. 

Some factors have been suggested to introduce systematic bias in self-

reported computer use duration. In a validity study, males had lower overestima-

tion than females (Mikkelsen et al. 2007), although other studies failed to fi nd 

gender-based systematic bias (Balogh et al. 2004, Douwes et al. 2007, Hansson 

et al. 2001). Increased age resulted in better agreement between self-reported and 

observed or registered duration (Faucett and Rempel 1996, Mikkelsen et al. 2007), 

and higher psychosocial work load increased the level of self-reported duration 

(Faucett and Rempel 1996, Mikkelsen et al. 2007). However, since these factors 

only explained a small proportion of the overestimation (5–10%), the causes of 

self-reported overestimation are still far from understood. 

Further understanding of the causes of overestimation is of great importance 

since self-reported duration seems to be related to the occurrence of upper extrem-

ity complaints (Andersen et al. 2008, Chang et al. 2007, IJmker 2008, Village et 

al. 2006) while this relationship with registered computer use duration seems to 

be smaller or even absent (IJmker 2008). Exposure during computer work thus 

seems to depend on the methods that are used. 
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Th e diff erences between self-reported and registered computer use duration 

will be discussed in Chapter 3, as well as the factors that might explain this dif-

ference, addressing the following research question: “What personal or psychosocial 

factors infl uence the level of bias associated with self-reported computer use duration?”

Interventions for CANS in computer workers

As described earlier, sustained muscle activation with little exposure variation and 

repetitive elements that characterizes computer use has been found to be related 

to CANS (see Table 1 and Flodgren et al. 2007, Jensen 2003, Tittiranonda et 

al. 1999, van Rijn et al. 2009). Because of this, interventions that try to increase 

exposure variation  by introducing more rest breaks in offi  ce work are believed to 

be widely eff ective (e.g. Balci and Aghazadeh 2003, Galinsky et al. 2007, McLean 

et al. 2001, van den Heuvel et al. 2003). 

However, three recent reviews concluded that there is limited evidence for 

a positive eff ect of more rest breaks in both primary (Brewer et al. 2006) and 

secondary prevention of CANS (Mathiassen 2006, Verhagen et al. 2007). One of 

the reasons for this lack of evidence might be that the biomechanical exposure dur-

ing breaks does not diff er to a substantial extent from exposure during computer 

work, at least not in terms of mean exposure (Arvidsson et al. 2006, Blangsted et 

al. 2004, Fernstrom and Åborg 1999).

In recent years, several methods have been developed to adjust break sched-

ules to the actual work load, taking the breaks that users naturally take into account. 

In particular, computer work can be regulated by pause software (of which Work-

pace is one of the largest in the Netherlands), which can administer additional 

pauses depending on the actual computer use of an individual user. Pause software 

developers claim that their software reduces the risk of developing complaints of 

the upper extremity (e.g. SmartErgo 2009). No research has yet been published 

on how the off ered pause regimes alter the total number of pauses that computer 

workers take spontaneously, and thus on how and to what extent pause software 
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alters the work-pause pattern of computer users. We will discuss these issues in 

Chapter 4, by asking: “What are the natural pause patterns that computer users 

display and how does pause software infl uence the work-pause pattern?”

Physical exposure and exposure variability during 
computer work

Although the pathophysiological mechanisms underlying the occurrence of CANS 

are still unclear, several hypotheses have been put forth in recent years (e.g. (Hägg 

1991, Van Galen 2001). One of the latest and leading aetiological models of 

CANS integrates several of these hypotheses and explores how they interact with 

each other. Th is model takes into account that the mechanisms of the diff erent 

hypotheses may work at diff erent times in the disease process (the ‘Brussels Model’, 

Johansson 2003). According to the model, continuous long-duration low-intensity 

work may lead to an accumulation in the muscles of metabolites and infl amma-

tory substances like lactic acid and potassium ions. Th is accumulation has two 

consequences: on the one hand, the activity of aff erent fi bres from muscle spindles 

(which are essential for the position and movement awareness of the limbs) is 

increased, causing a disturbed proprioception and thus a disturbed motor control 

which leads to a further accumulation of infl ammatory substances.  On the other 

hand, the accumulation of metabolites can lead to increased vasoconstriction 

caused by increased activity of sympathetic neurons. Vasoconstriction can hinder 

the removal of accumulated infl ammatory substances and thus increases the build-

up. Th ese two vicious cycles can ultimately lead to excessive muscle load and pain if 

maintained for a long period of time (Crenshaw et al. 2006, Flodgren et al. 2007, 

Johansson 2003). It seems likely that low variability in biomechanical exposure can 

lead to an accumulation of metabolites and through activation of the described 

feedback mechanisms could eventually lead to musculoskeletal complaints. 

A solution to increase this exposure variability is often sought in adding alter-

native tasks or additional pauses, but so far, it is unknown whether non-computer 
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activities can really off er a source of increased variation in computer-intensive work. 

Most of the studies that estimated physical exposure during computer work have 

used self-reports or observational techniques (Brandt et al. 2004, Juul-Kristensen 

et al. 2004, Lassen et al. 2004, van den Heuvel et al. 2006), while people’s percep-

tion of exposure has been found to be imprecise and unreliable, and observational 

methods lack measurement precision (David 2005, Li and Buckle 1999). 

Measuring physical exposure by direct methods involves sensors that are 

attached directly to the participant, measuring variables such as muscle activ-

ity or fatigue, force, position, velocity and  acceleration (David 2005). Until 

recently, sensor systems were so large or energy-demanding that experiments had 

to be done in a laboratory setting, inhibiting natural, spontaneous computer work 

and computer behaviour. Some studies have recently begun to measure physical 

exposure with mobile devices (Arvidsson et al. 2006, Fernstrom and Åborg 1999, 

Nordander et al. 2000), but information on how registration software is able to 

help in estimating natural muscle activity patterns in individual offi  ce workers is 

still lacking. In Chapter 5, an experiment is described in which natural computer 

use during offi  ce work is measured, combined with a small mobile device measur-

ing physical exposure by means of EMG (electromyography). In this chapter, we 

will focus on the following research questions: “What are the diff erences in exposure 

between computer and non-computer use and how do these diff erences contribute to 

overall exposure levels and variability?”

Mouse use kinematics

Th e duration of computer use, as a measure of cumulative exposure, has received 

much attention in the ergonomic research fi eld. However, much less emphasis 

has been given to the characteristics of keyboard and mouse use separately. Com-

pared with keyboard use, mouse use requires more complex eye-hand coordination 

(Sandfeld and Jensen 2005) and is hypothesized to involve less exposure vari-

ability, more repetitive movements and more constrained postures than keyboard 
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use (Dennerlein and Johnson 2006, Lee et al. 2007). In a recent review, IJmker 

and colleagues found moderate evidence for a positive association between the 

duration of mouse use and hand-arm symptoms (IJmker et al. 2007), while for 

keyboard use, such a conclusion could not be drawn. In the past years, researchers 

have started to focus on mouse use behaviour by performing tasks in the lab (e.g. 

Huysmans et al. 2008, Visser et al. 2004). Th ese studies suggest that the high level 

of precision during mouse use might be associated with changes in limb stiff ness 

(through increased co-contraction), which could, through various pathways, lead 

to the development of CANS.

However, whether mouse movements from laboratory conditions can be 

extrapolated to real-life computer work remains to be seen. Hardly any informa-

tion is available on mouse movements in everyday, natural computer work, not 

even simple demographics such as how many mouse movements offi  ce workers 

make, how large these movements are and in which directions they occur. In 

Chapter 6, we will analyse mouse movements and kinematics of hand movements, 

and answer the questions: “What are the characteristics of mouse movements during 

daily computer use and how can these patterns be explained?”
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Outline of the thesis

In this dissertation, a description is given of patterns of natural computer use and 

physical exposure during computer use. 

Chapter 2 focuses on the methodological aspects of measuring computer use 

by registration software. In this chapter, an analysis is presented on how computer 

use duration is infl uenced by choosing a temporal threshold value for classifying 

non-computer use. 

Computer use duration can be measured by other methods as well. In 

Chapter 3, two methods for estimating computer use duration are compared; 

self-reports and registration software. In this chapter, the infl uence of diff erent 

personal and psychosocial factors on the level of error and bias associated with 

self-reported computer use duration is assessed.

 Registration software is often used in combination with pause software, 

which introduces additional computer pauses and is used as an intervention against 

CANS. In Chapter 4, the natural work-pause pattern of offi  ce workers is examined. 

Furthermore, the infl uence of commercially available pause software on the work-

pause pattern is analysed by means of data simulation. 

Even though the insertion of pauses is considered a way to increase exposure 

variability in offi  ce work, a thorough description of exposure and exposure vari-

ability during computer work and non-computer work is still lacking. Th erefore, 

Chapter 5 examines the physical exposure variability in offi  ce workers by analysing 

arm and shoulder muscle activity in computer tasks and in non-computer tasks 

and comparing these tasks. 

Mouse use appears to pose a larger risk for CANS than keyboard use, but 

only scarce information is available on mouse movements in everyday computer 

use. In Chapter 6, computer mouse movements are described to gain insight into 

kinematics of natural hand and arm movements. Th e movement amplitude, direc-

tion, velocity are quantifi ed, and a hypothesis is proposed to explain the curvature 

of computer mouse movements. 
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Finally, in Chapter 7, the fi ve research questions that are answered in the 

Chapters 2 through 6 are summarized and discussed. In addition, practical implica-

tions of the dissertation and recommendations for further research are presented . 

Finally, the question whether registration software should be used to assess physical 

exposure during offi  ce work is answered. 

Articles described in this thesis

• Chapter 2:  Richter JM, Slijper HP, Over EAB, Frens MA. Computer work 

duration and its dependence on the used pause defi nition. Applied Ergo-

nomics 2008; 39 (6): 772–8.

• Chapter 3:  Richter JM, Burdorf A, Slijper HP, Frens MA. Determinants 

of systematic bias in self-reported computer use duration. In preparation. 

• Chapter 4:  Slijper HP, Richter JM, Smeets JBJ, Frens MA. Th e eff ects of 

pause software on the temporal characteristics of computer use. Ergonomics 

2007; 50 (2): 178–91.

• Chapter 5:  Richter JM, Mathiassen SE, Slijper HP, Over EAB, Frens MA. 

Diff erences in muscle load between computer and non-computer work 

among offi  ce workers. Ergonomics 2009. In press. 

• Chapter 6:  Slijper HP, Richter JM, Over EAB, Smeets JBJ, Frens MA. 

Statistics predict kinematics of hand movements during everyday activity. 

Journal of Motor Behavior 2009; 41 (1): 3–9.
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Abstract 

Several ergonomic studies have estimated computer work duration using registra-

tion software. In these studies an arbitrary non-computer threshold (NCT; the 

minimal time between two computer events to constitute a pause) is chosen and 

the resulting duration of computer work is estimated. In order to uncover the 

relationship between the used non-computer threshold and the computer work 

duration (PWT) we used registration software to record usage patterns of 571 

computer users across almost 60.000 working days. For a large range of NCTs 

(1–120 s) we found a shallow, log-linear relationship between PWT and NCTs. 

For keyboard and mouse use, a second order function fi tted the data best. We 

found that these relationships were dependent on the amount of computer work 

and subject characteristics. Comparison of exposure duration from studies using 

diff erent non-computer thresholds should take this into account, since it could 

lead to misclassifi cation. Software manufacturers and ergonomists assessing com-

puter work duration could use the found relationships for software design and 

study comparison.
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Introduction

Several studies have been shown a relation between musculoskeletal complaints of 

arm, neck and/or shoulder (i.e. CANS) and the duration of computer work (see 

recent reviews, e.g. IJmker et al. 2007, Village et al. 2006). From these reviews, a 

good indication for a dose-response relationship was found between mouse use and 

the incidence of CANS (odds ratios (OR’s) mostly >2 to 7.3), while the evidence 

for a similar relationship between the hours of keyboard use and the incidence of 

CANS was weaker (OR’s from 1.2 to 2.9). All the studies included in the reviews 

used questionnaires to estimate the time spent working with the computer. Other 

methods commonly used by ergonomic researchers are (video-based) observation 

and registration software, of which the latter one gained popularity this decade 

(for an overview see David 2005, Homan and Armstrong 2003). 

From studies combining work durations estimated by self-administered 

questionnaires with external observers, it is known that participants tend to over-

estimate the time they work with the computer (Faucett and Rempel 1996, Hein-

rich et al. 2004, Homan and Armstrong 2003, Lassen et al. 2005, Van der Beek 

and Frings-Dresen 1998). Some studies have therefore investigated whether work 

duration as measured by monitor software corresponds to duration measured by 

external observers (Heinrich et al. 2004, Homan and Armstrong 2003). Results 

indicate that when pauses shorter than 20 to 30 seconds of the recorded time traces 

are not included, work times as measured through software are in reasonable cor-

respondence with the work times reported by observers. Nonetheless, the criterion 

of whether a gap in computer input is of suffi  cient duration to constitute a pause 

(non-computer threshold ) is arbitrary (Slijper et al. 2007). So far, most studies have 

used a non-computer threshold of 30 seconds for determining the duration of all 

computer use, and a diff erent non-computer threshold (5 seconds) for assessing 

keyboard use and mouse use separately (Blangsted et al. 2004a, Douwes et al. 2003, 

Douwes et al. 2005, Heinrich et al. 2004, Homan and Armstrong 2003, Lassen 

et al. 2005). However, others used non-computer thresholds of 60 seconds for all 



Chapter 2

28

2

computer work (Chang et al. 2007) or 2.5 seconds for keyboard use (IJmker et al. 

2006). Th e non-computer threshold that is chosen will infl uence total computer 

work duration. However, no research has yet exactly quantifi ed this infl uence.  

Th e goal of this paper is therefore to objectively quantify the relationship 

between the non-computer threshold used and the resulting computer work dura-

tion. Besides total computer use we also investigated whether there were diff er-

ences in this relationship for mouse and keyboard use separately. It is important to 

note that although we will compare work duration across diff erent non-computer 

thresholds, this study is NOT able to provide insight into which non-computer 

threshold is best used. Cross-validation studies like those by Mikkelsen et al. (2007) 

or Heinrich et al. (2004) are suited to answer this question.

In the current paper, we investigated whether the relationship between non-

computer threshold and computer work duration is modifi ed by factors like the 

amount of computer usage or the characteristics of the computer users. If the relation-

ship is indeed diff erent for diff erent user groups, it is possible that when results 

from diff erent studies are compared, work duration can be over- or underestimated 

due to the fact that diff erent non-computer thresholds were used. Results of this 

analysis are thus important for study comparison and the design of future studies.
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Methods

Monitor software

We installed custom built registration software on the computers of 571 healthy 

employees of the academic hospital in Rotterdam, the Netherlands, for a period of 

2 years. Participants signed informed consent before entering the study, and were 

all regular computer users (the inclusion criterion was working with a computer 

>50% of total contract hours). Before the start of the study participants fi lled in a 

small questionnaire in which they were asked about personal characteristics. Th e 

participants (mean age: 39.9 ± standard deviation (SD) 10.5 years, 140 males 

and 431 females) performed a variety of computer intensive work. Participants 

were divided in four main job functions1: 150 participants had an administra-

tive job (26%), 77 participants were researchers (14%), 40 were IT-professionals 

(7%) and 304 participants had managerial or other job functions (53%). Th ey 

reported working for 35 (± 8) hours per week on average or, taking the amount 

of working days into account, 8:06 hours: minutes/day. Of these working hours, 

they estimated working 5:30 (± 0:41) hours/ day with the computer. 

 During the time the participants were logged on to their computer, the 

software registered the position of the cursor (x, y coordinates in pixels) with a 

frequency of 10 Hz, whenever this position changed. Additional computer events 

that the software recorded were key presses, mouse clicks and mouse wheel use 

(temporal resolution 0.1 s). Th e software logged these data in the background in 

order not to interfere with the regular work of the participants. Data fi les were 

collected centrally and processed offl  ine.

1 Job functions: The group with administrative jobs contained professions such as (medical) typists, 
data-entry employees, and secretaries. The ‘research’ group consisted of scientifi c employees, rang-
ing from PhD-students to Professors. ‘IT-professional’ jobs included IT-specialists, data managers 
and statistical employees. Managerial and other jobs contained jobs such as (fi nancial) advisors, 
policy makers and (communication) managers.
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Data analysis

Recorded data fi les were included in the analysis when recorded working days 

contained 5.000 computer events or more. Using this criterion, we included 

59.044 working days in the analyses. From these days we extracted the times at 

which a computer event was recorded. Th e work time (WT) was defi ned as the 

time from the fi rst to the last recorded computer event on a working day. For all 

recorded days the fi le sizes were saved, refl ecting the total number of events (Etot) 

generated through input devices, making it a good indicator of the total amount 

of computer use. 

Th e time series corresponding to computer events were used to calculate the 

percentage of the day classifi ed as computer work (PWT, the percentage computer 

work of the WT) for a wide range of non-computer thresholds (NCT: 1, 2, 4, 8, 12, 

16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120 s). An analysis was 

performed on three diff erent time series containing all computer events, keyboard 

events and mouse events, respectively. From these time series, the computer work 

duration (PWT), keyboard duration (PWTk) and mouse duration (  PWTm) were 

calculated for every NCT. 

On average we recorded from each subject 103 days (range 1–654 days).  

To estimate the relationship between NCTs and computer work duration (PWT), 

keyboard (PWTk) and mouse duration (PWTm) we performed a fi t between the 

log10 (hereafter called ‘log’) of the NCT and PWT. Th e slope and intercept of a 

linear fi t were used to characterize the relationship for PWT. For keyboard (PWTk) 

and mouse duration (PWTm) a quadratic function was used to fi t the data. As 

a measure for the reliability of the relationship between NCT and PWT, PWTk 

and PWTm we calculated the correlation coeffi  cient between the two variables for 

every day separately.

To quantify whether the variability of PWT was constant for diff erent NCTs 

we calculated the standard deviation and coeffi  cient of variation (relative error) of 

PWTs across all participants and days for every NCT. 
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In order to estimate the eff ects of the amount of computer work (total 

number of events: Etot) and subject characteristics (age, main job function and 

gender) we performed four repeated measures ANCOVAs on the PWT values of 

individual days. Th e dependent variable was the PWT value for every subject aver-

aged across all days. For each analysis, the variable of interest was entered in the 

model as a between groups factor while the other factors were entered as covariates. 

Th e following categories were used for age: 18–30, 31–40, 41–50, >50 years and 

for job function: administrative, research, IT-professional and managerial/other. 

For Etot we divided all fi les into four equal quartiles (p0–p25, p26–p50, p51–p75, 

p76–p100) corresponding to an average number of 14000, 28000, 42000 and 

67000 computer events per data fi le. In the analyses we focused on both the inter-

action between NCT and the between-groups factor and the main eff ect of the 

between-groups factor. While the interaction eff ect denotes diff erences in the slope 

of the relationship between NCT and PWT between subgroups, the main eff ect 

describes diff erences in intercept. Additionally, post-hoc analyses with Bonferroni 

corrections were performed (alpha = 0.05). 
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Results

Relationship between non-computer threshold and 
computer work duration

Inspection of data from individual days showed monotonically increasing values 

of computer work duration (PWT) with the log of the non-computer thresh-

old (NCT) (see for example Figure 2.1). Th e correlation coeffi  cients of the two 

Figure 2.1: Hundred randomly selected working days from our dataset of almost 60.000 days. 
Shown is the relationship between the 21 non-computer thresholds (1–120 s) and the percent-
age of computer work time (PWT). For each day, the 21 data points are connected through a line.
Note the monotonic increase in PWT with an increase of the log10 of the non-computer threshold.
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variables for each subject-day separately were generally very high (mean r: 0.984 

(SD 0.018)). We found variability across participants especially with regard to the 

intercept of the relationship.  

When we pooled all data together, we found a near linear relationship 

between log of NCT and PWT. Figure 2.2 shows the mean data points for each 

NCT. Th e fi t of the log of the NCTs versus the PWT is plotted as a straight line 

(top line).

Figure 2.2: The relationship between PWT and the log10 of the non-computer thresholds for all 
computer use (top line), mouse use (middle line) and keyboard use (bottom line). Shown data 
are values averaged over all days and participants. The mean data points, as well as fi ts through 
the data are shown. For all computer use a linear fi t was used, and for mouse and keyboard use a 
quadratic function. Note that mouse and keyboard durations do not add up to overall computer 
usage duration due to overlap of the activities in the underlying time series.
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Th e mean fi t of the data was described by the following equation:

Equation 2.1a

PWTk = 11.64 * log(NCT ) + 21.06

For the range of NCTs that were calculated (1 to 120 seconds), the mean 

PWT varied from 21.15 to 46.04% of the total work time. In order to assess what 

changes in NCT lead to corresponding changes in PWT, Equation 2.1a was rewrit-

ten. Based on the original NCT used (NCTold) and corresponding PWT (PWTold), 

a new PWT (PWTnew) corresponding to a diff erent NCT (NCTnew) can be calcu-

lated as follows: 

Equation 2.1b

PWTnew = PWTold + 11.64 * log(NCTnew————
NCTold

)

According to Equation 2.1b, a doubling of the non-computer threshold 

results in a 3.5% increase in computer use duration for the studied non-computer 

thresholds. Th e variability of PWT across days was diff erent for diff erent NCTs. 

Standard deviation of PWT increased from 10.5% (at NCT 1 s) to 18.5% (at 

NCT 120). Coeffi  cient of variation showed however an opposite relationship. CV 

values decreased from 0.5 to 0.4 with increasing NCT, indicating the declining 

relative variability across days with increasing NCT.
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Keyboard and mouse duration 

Based on the same dataset, the percentage work time that the participants spent 

using their keyboard (PWTk) or mouse (PWTm) was calculated for the same range 

of NCTs. Figure 2.2 (two bottom lines) shows both variables as a function of the 

non-computer threshold. Note that work durations for keyboard and mouse use 

separately do not add up to yield overall computer use duration, due to overlap 

in the activities. Th is will be further explained in the Discussion.

Like for total computer use, correlations between the log of NCTs and key-

board or mouse duration were high for individual days (mean r keyboard: 0.953 

(SD 0.040), mean r mouse: 0.973 (SD 0.028)). We found that the relationships 

between log(NCT) and PWTk and PWTm were not linear and therefore introduced 

a quadratic term while fi tting the data. Note that the two bottom curves shown 

in Figure 2.2 diff er substantially in intercept. Less time is thus spent using the 

keyboard than using the mouse. For keyboard use, the following equation was 

best fi tted through the data points:

Equation 2.2a

PWTk = 6.37+0.68 * log(NCTk) + 3.96 * (log(NCTk))
2

Depending on the NCT (1–120 seconds), keyboard use constituted 5.81 

to 25.33% of WT per day in our dataset. Th e impact of using diff erent NCTs on 

the PWTk was calculated by rewriting Equation 2.2a to:
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PWTnewk = PWToldk+0.68*log(NCTnewk————
NCToldk

)+3.96*(log(NCTnewk))
2-3.96(log(NCToldk))

2

Equation 2.2b

Since a quadratic function was used, the diff erence in PWTnewk when dou-

bling the NCT was not constant for all NCTs, but varied from 0.56% (NCT 1  

2 s) to 4.80% (NCT 60 120 s). Similar to keyboard use, a quadratic function 

of log-transformed non-computer thresholds versus PWTm yielded a good fi t. Th e 

corresponding equations for mouse use are as follows:

Equation 2.3a

PWTm = 15.04+5.71*log(NCTm)+3.07*(log(NCTm))2

Equation 2.3b

PWTnewm = PWToldm+5.71*log(NCTnewm————
NCToldm

)+3.07*(log(NCTnewm))2-3.07(log(NCToldm))2

From equation 2.3b, it follows that dependent on the NCT (1–120 seconds), 

a computer working day (WT) consisted of 14.56 to 40.72% mouse use. A dou-

bling of NCT resulted in an increase of 2.00% (NCT 1 2 s) to 5.28% (NCT 

60 120 s) of PWTm.
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Factors modifying the relationship between NCT and PWT
In order to investigate whether factors like the amount of work (Etot) or subject 

characteristics can modify the relationship between NCT and PWT we performed 

multivariate analysis on subgroups of the dataset. First we looked whether the fi les 

with a diff erent number of recorded events (Etot) on a particular day infl uenced 

the relationship. We found a high correlation between Etot and the average work 

duration across all NCTs (r = 0.7122). As is shown in Figure 2.3a, the diff erence 

in work duration for diff erent values of Etot is mostly brought about by a vertical 

Figure 2.3: The relationship between PWT and NCT for diff erent characteristics of the working 
day (2.3a) and subject characteristics (2.3b–d). Shown are the adjusted marginal means for each 
subgroup. 2.3a: PWT-NCT relationship where diff erent lines represent each of the four quartiles 
of Etot (see Methods) as a measure of overall computer work. 2.3b: Relationship for diff erent age 
categories (age groups shown in legend). 2.3c: Relationship specifi ed by gender. Note that there 
are large diff erences in intercept in the relationship due to diff erences in the amount of computer 
use. Note also that the slope of the relationship is not equal for all subject groups. 2.3d: Relation-
ship for diff erent job functions. Main job functions are described in the Methods.
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shift of the whole curve (change in intercept). Comparing changes in slopes and 

intercepts for the lowest and highest quartile of Etot showed that changes in inter-

cept were on average 2.1 times larger than changes in slope. Nonetheless, statisti-

cal analysis showed that besides a large main eff ect of Etot (F(3,59037)=15764.8; 

P<0.001) there was a signifi cant interaction between NCT and Etot (Pillai’s Trace: 

F(60,177060)=381.2; P<0.001). Analysis of the adjusted slopes showed that for 

small Etot values (p0–p25) the slope of the relationship was more shallow (0.15 

%/s) than for large Etot values (p75–p100; 0.24 %/s). Th is eff ect can also be seen 

in Figure 2.1. Th e values shown in Figure 2.3a–d are the predicted marginal means, 

in which are adjusted for the eff ects of covariates (see Methods). 

 Next, we looked at the eff ects of the subject characteristics of age, job 

function and gender on the relationship. Results are shown in Figures 2.3b–d. 

Signifi cant main eff ects for all three factors were found (age: F(3,59037) = 84.7; 

P<0.001; job function: F(3,59037) = 316.2; P<0.001; gender: F(1,59039) = 4.49; 

P<0.04). Post hoc analyses showed that males and IT-professionals and research-

ers had slightly higher computer work durations across non-computer thresh-

olds (all diff erences signifi cant P<0.001) (see Figure 2.3). Again, also signifi cant 

interactions were found between NCT and each of the factors (Pillay’s trace: age: 

F(60,177060) = 24.6; P<0.001; job function: F(60,177060) = 152.1; P<0.001; 

gender: F(20,59020) = 68.5; P<0.001). Analysis showed that slopes were slightly 

shallower for younger participants, although this eff ect was ambiguous for older 

age categories (Figure 2.3b). Changes in intercepts for age categories were on aver-

age 0.45 times larger than the diff erences in slopes. Th e signifi cant interaction for 

gender was due to slightly shallower slope for male users (0.198 vs 0.204 %/s), 

the two curves therefore merge for higher non-computer thresholds (see the right 

end of the curves in Figure 2.3c). Similar changes in the relationship were visible 

for the diff erent job functions (Figure 2.3d), in which the slope of the relationship 

for researchers and those with managerial or other job functions was shallower (on 

average: 0.19 %/s) than that of the IT-professionals and secretaries (on average 

0.23 %/s).
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Discussion

Having measured a large and diverse group of computer users for a long period, 

we found a robust relationship between the non-computer threshold and the 

computer work duration. For the range of non-computer thresholds we looked 

at (covering all realistic non-computer thresholds) doubling the non-computer 

threshold resulted in an increase of 3.5% in computer work duration. For keyboard 

and mouse use separately, the resulting work duration was fi tted using a second 

order function, meaning that an increase in non-computer threshold did not result 

in a constant increase in work duration. However, these diff erences were never 

larger than 6% for a doubling of the non-computer threshold. 

 Th e intercept of the fi tted relationship between the non-computer thresh-

old and the work duration gives a good indication of the amount of computer work 

that is being performed on a particular day. Th is was refl ected in a high correlation 

(>0.7) between the intercept and the amount of computer events. Th e changes in 

intercept due to diff erences between subgroups of participants (based on age, job 

function and gender) were relatively small compared to the changes due to the 

amount of computer events (compare Figure 2.3a with Figures 2.3b–d).

Based on these data, we can conclude that for the range of non-computer 

thresholds we looked at, groups of participants shared rather similar work-pause 

patterns. Th is is an indication that the relationship between the non-computer 

threshold and the computer work duration that we found can be generalized to 

other job functions which consist of frequent computer use and could facilitate 

study comparison. Moreover, these robust relationships could be used by software 

manufacturers interested in administering pause regimes (see Slijper et al. 2007) 

depending on the duration of a work period and a given non-computer thresh-

old . For the ergonomist working in the fi eld it might not always be possible to 

install registration software. In this case the ergonomist could assess work duration 

manually with a relative large non-computer threshold (practically, this would be 

easier to implement) and then use the given equations to extrapolate what the 
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work duration might be using a non-computer threshold of 30 s. It is uncertain 

whether the found relationships are applicable when NCTs are used that are much 

larger than the two minutes investigated here, so ergonomists should stay within 

the studied range.

Keyboard, mouse and total computer use

While the relationship between NCT and PWT was log-linear, such a relation-

ship was not found for mouse (PWTm) and keyboard (PWTk) use. Furthermore, 

for mouse and keyboard use separately we found diff erences in both the intercept 

and the curvature of the relationship (see Figure 2.2). Th e diff erences in intercept 

refl ect diff erences in the amount of time spent using the mouse and keyboard, a 

proportion already reported by other authors (Chang et al. 2007, Heinrich et al. 

2004, Mikkelsen et al. 2007). On the other hand, the found curvature is more 

diffi  cult to explain: when one uses the computer, keyboard and mouse are com-

monly interchangeably used. Th at is, episodes of keyboard use are interrupted by 

mouse usage and vice versa. When calculating either PWTm or PWTk continuous 

episodes of computer use are broken down into separate smaller duration episodes 

in which only the keyboard or mouse is used. Th e interruptions in input device 

activity that are created this way are relatively large, i.e. larger than the times 

between individual keystrokes or cursor changes. Th is would favor the occurrence 

of relatively larger breaks in input device activity over smaller ones. Th is is cor-

roborated by the relatively shallow slope of the relationship for small NCTs and 

the steeper slope for larger NCTs (more breaks get now added as work). 

 A related issue is that adding mouse and keyboard usage does not neces-

sarily yield overall usage duration. For instance, Figure 2.2 shows that for the 

smallest NCT, adding mouse and keyboard work duration yields a value smaller 

than the overall computer work duration, while for the highest NCT the added 

work duration is much larger than the overall usage. How can this pattern be 

explained? For example, consider using the keyboard for short periods of time, 
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interchanged with mouse use. When calculating keyboard work duration using a 

NCT shorter than the episodes of mouse duration, all the mouse episodes would 

not be considered work time. Moreover the time it took to switch from keyboard 

to mouse use is also not classifi ed as work time. Consequently, for small NCTs 

the summed work durations of mouse and keyboard use can be smaller than the 

overall use. 

For the same time series, using a NCT that is larger than the episodes of 

mouse use duration would however consider the whole time between keyboard 

usage to be classifi ed as work. Th is is of course also true when calculating the dura-

tion of mouse usage; keyboard episodes will also be classifi ed as work. So for larger 

NCTs the amount of time classifi ed as both keyboard and mouse use increases. In 

other words, when calculating mouse and keyboard use separately the amount of 

overlap between the two activities increases with larger non-computer thresholds. 

As a result the summed worked duration (PWTm + PWTk) can become much larger 

(up to two times) than overall work duration (PWT). Th e duration of mouse and 

keyboard work can thus not be added to get an estimate of overall computer use 

duration. Studies assessing keyboard and mouse use separately should take this 

into consideration.

Misclassifi cation of work duration

In the Introduction we asked the question whether the relationship between non-

computer threshold and computer work duration was modifi ed by characteristics 

of the computer users. As the results show this is indeed the case. In our statistical 

model diff erences due to other factors like the amount of computer use were 

entered in the model as covariates. Th e found eff ects can thus solely be attributed 

to diff erences in subject characteristics (age, job function, gender). Diff erences 

between groups were mostly refl ected in diff erences in intercept, however signifi -

cant interactions were found between subject characteristics. Th ese interactions 

showed that for some subject groups the slope of the relationship was slightly 
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steeper or shallower than for others. It is therefore important to notice that this 

could lead to misclassifi cation of the exposure level if (in diff erent studies) diff er-

ent non-computer thresholds are used to estimate work duration. For example, 

looking at Figure 2.3, using a NCT of 8 s researchers and IT-professionals work 

an equal duration, while using a NCT of 120 s IT-professionals work longer. It 

is thus important to take this into consideration when comparing results from 

diff erent studies or when designing a new study. It is fortunate that most studies 

so far have used similar non-computer thresholds (around 30 s).

In conclusion, the current study has shown a robust log-linear relationship 

between non-computer threshold and the work duration. Equations 2.1b, 2.2b 

and 2.3b can be used as benchmarks for comparing work duration estimates in 

existing studies. Hopefully future studies, using the described equations, will 

allow for better comparisons of work load between diff erent workers, branches, 

companies and even countries.
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Abstract

Computer use duration as measured by self-reports is diff erent from duration 

measured by registration software. Since the relationship between computer use 

duration and CANS (complaints of the arm, neck and/or shoulder) is apparent 

for self-reported duration but much weaker or even absent for registered duration, 

this indicates that diff erent duration estimates measure diff erent constructs of 

physical exposure. In the current study, the infl uence of personal and psychosocial 

factors on the level of disagreement between self-reported and registered duration 

(aRB; absolute relative bias) was assessed. Female gender and higher psychosocial 

job demands were found to have a higher average aRB, and the infl uence of these 

factors on the model indicates the presence of systematic bias. However, these two 

factors only slightly altered the within- and between-worker variance, which was 

suggesting  a large amount of variability in aRB is present in both factors. Th is 

suggests that comparing these two estimates of computer use duration introduce 

a large amount of random error, which indicates that self-reported and registered 

computer use duration measure a diff erent construct of computer use duration.
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Introduction

Extensive computer work is often associated with complaints of the upper extrem-

ity, and is mediated by repetitive motion of the fi ngers and sustained muscle 

activation of the arm and shoulder with little exposure variation (Flodgren et al. 

2007, Jensen 2003, Tittiranonda et al. 1999). However, assessing the duration 

of computer use has proven to be a challenge for ergonomists and epidemiologic 

research. (Video) observation and self-reports are the most widely used methods 

for assessing computer use duration, but since about a decade, registration software 

has increasingly been used in ergonomic studies (e.g. Andersen et al. 2008, Chang 

et al. 2007, IJmker et al. 2006, Richter et al. 2008). 

Two recent reviews have found a positive relationship between the duration 

of computer use and the occurrence of complaints of arm, neck and/or shoulder 

(CANS) (Wahlström 2005, IJmker et al. 2007). In these reviews, computer use 

duration was estimated with self-reports or observational techniques. However, the 

validity of self-reported exposures has recently been found to be low to moderate, 

which is most likely caused by the lack of specifi city in the methods of validity 

assessment (Barrero et al. 2009, Stock et al. 2005). Moreover, three recent studies 

measuring computer use duration by registration software did not fi nd a positive 

relationship between computer use duration and the prevalence or incidence of 

chronic CANS (Andersen et al. 2008, IJmker et al. 2008). Th e reason for this 

discrepancy might be that diff erent computer use duration estimates measure dif-

ferent constructs of physical exposure, or the fact that both the outcome measure 

(CANS) and the risk factors are measured with self-reports (common method 

bias) (Podsakoff  et al. 2003). In order to prevent CANS, it is vital to understand 

the relationship with diff erent measures of computer use duration. 

Most cross-validation studies that have compared self-reports with observa-

tion or direct measurements have found that participants tend to overestimate the 

time they work with the computer (Faucett and Rempel 1996, Heinrich et al. 2004, 

Homan and Armstrong 2003, Lassen et al. 2005, Van der Beek and Frings-Dresen 
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1998). Th is consistent fi nding indicates the presence of systematic bias, which 

can be caused by a bias of a measurement system or estimate method and causes 

results which are consistently too low or too high. One possibility might be the 

presence of response bias; for example, participants with CANS might feel that 

the reason for their complaints originates in using the computer, and therefore - 

unintentionally or intentionally - report working longer with the computer than 

participants without CANS. Apart from systematic bias, overestimation can also 

result from random errors, which arise from random fl uctuations in the measure-

ments. Th ese errors increase the variance of a variable and therefore decrease the 

magnitude of correlations with other variables, an eff ect known as attenuation of 

risk (Armstrong 1998). In order to assess the presence of systematic bias with some 

level of certainty, repeated measures have to be performed. To our knowledge, no 

cross-validation studies have done this so far. 

Furthermore, other factors seem to infl uence the level of self-reported meas-

ures of computer use exposure. In some validity studies, males had lower overesti-

mation than females (Mikkelsen et al. 2007), although other studies failed to fi nd 

gender-based systematic bias (Balogh et al. 2004, Douwes et al. 2007, Hansson 

et al. 2001). Older age has been found to agreement better between self-reported 

and observed or registered duration than younger age (Faucett and Rempel 1996, 

Mikkelsen et al. 2007), and higher psychosocial work load increased the level of 

self-reported duration (Faucett and Rempel 1996, Mikkelsen et al. 2007). How-

ever, since these factors did not explain a large proportion of the overestimation 

(5–10%), the (variability of the) magnitude of this overestimation is far from 

understood. 

We performed a longitudinal study in which we repeatedly (up to 3 times) 

asked computer users in a questionnaire to estimate the duration of their computer 

use while software registered their computer use based on their input device use. 

Furthermore, we collected personal and psychosocial characteristics from the self-

reported questionnaires. Th e aims of the study were to estimate the level of random 
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error and systematic bias in self-reported computer use duration, and to determine 

individual and psychosocial determinants of random error and systematic bias. 
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  Methods

Study population

A longitudinal study was conducted among 221 offi  ce workers from the Erasmus 

MC in Rotterdam, the Netherlands. Th ey were all frequent computer users; before 

the onset of the study, they all estimated working at least 50% of their contract 

hours with a computer. Th ey had a mean age of 37.7 years (±9.9, range 20–60 

years) and 29% was male. On average, they had 11.4 years of computer experience 

(±4.7, range 2–34 years). Educational level ranged from junior vocational educa-

tion to university level. 25% did secretarial work, 26% were researchers, 12% were 

IT-specialists and 37% had managerial or other jobs (for more information on 

the main job function categories, see Richter et al. 2008). Before the study onset, 

participants signed an informed consent.

Materials

We installed custom built registration software on participants’ computers, which 

stayed on the computer until the end of the study (18 months). Th is software 

recorded all computer events (mouse cursor position changes, key presses, mouse 

clicks and mouse wheel use) while participants were logged on to their occupa-

tional computer. Data for every participant and every day were stored in a person-

ally identifi ed fi le on participant’s computer and were automatically sent to the 

researchers and processed offl  ine. Furthermore, participants fi lled in a question-

naire on work-related, personal and psychosocial characteristics approximately 

every six months, starting with the installation of the software, up to a total of four 

questionnaires. Since no software data was available with the fi rst questionnaire, 

we used this questionnaire only to compare work and personal factors with the 
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second questionnaire. From here on, the second questionnaire will be called the 

fi rst questionnaire, the third the second and so on. 

Computer use duration estimates

Computer use duration in all three questionnaires was derived from the follow-

ing question: ‘In the period between the last questionnaire and the current one, 

on average how many hours per day did you work with a computer at work on a 

regular workday?’ Th e time between two questionnaires was on average six months. 

Possible answer categories were ‘2 to 4 hours’, ‘4 to 6 hours’, or ‘more than 6 hours’. 

Computer use duration from registration software was measured as fol-

lows. Th e time between two computer events (i.e. keyboard strokes, mouse clicks, 

mouse movement or mouse scroll wheel use) was not allowed to exceed 30 seconds 

(non-computer threshold, NCT) for the events to be considered as uninterrupted 

computer work (see also Richter et al. 2008). For each participant and each day, 

the computer work duration was calculated by taking the sum of all the periods 

of uninterrupted computer work on a working day. 

Available dataset

Since participants had to estimate their work duration in the previous six months, 

we selected all recorded work days up to six months before participants fi lled in 

each questionnaire for the dataset. In order to be included, a recorded work day 

had to consist of 5000 computer events or more. When participants worked at 

more than one computer during one working day, we used the data from the 

computer that had the longest work duration. Th e 221 participants described 

above all fi lled in at least one questionnaire and had at least one day of registered 

computer use. Since from some participants we recorded only a small number of 

days in the half year periods prior to a questionnaire we applied empirical resam-

pling of data to assess whether the daily exposure measures were reliable estimates 
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of the average exposures across the previous six months. Resampling for each 

subject and every questionnaire period separately was performed ten thousand 

times using diff erent sample sizes (from 2 up to 60 measured days of computer 

use) (Hoozemans et al. 2001).

In order to compare results across participants and questionnaire periods, 

the standard deviation of these individual responses were normalized by dividing 

through the mean of the sample responses (Coeffi  cient of variation; CV  d). Th e 

CVd values were interpreted as relative errors in estimating the six month exposure 

level for particular sample sizes. In order to select only those questionnaire periods 

which had enough days to reliably estimate the six month exposure period, we set 

the CVd threshold at a maximum of 10% of the average duration measured over all 

days, including 90% of all participants. In Figure 3.1, the result of this procedure 

is shown. In the current study, we found a minimum of 44 measured days per 

participant per six months (see arrow at thick horizontal line), so for the analyses, 

we included only those participants with at least this number of days measured. 

Measurements

At baseline, participants were asked about the following personal characteristics: 

gender, age, job function, working hours and educational level. Psychosocial work 

characteristics were assessed with the Dutch version of the Job Content Question-

naire (Karasek et al. 1998, Landsbergis et al. 2002). Th e items were scored on a 

Likert scale of 1 to 4, and value labels are “strongly agree”, “agree”, “disagree” and 

“strongly disagree”. Questions were combined to form dimensions of psychosocial 

job demands (5 items) and decision latitude (9 items). Th ese questions were only 

asked in the fi rst and third questionnaire. For further details on the subscales, see 

(Landsbergis et al. 2002). Furthermore, we used the subscale ‘worrying’ (4 items) 

from the questionnaire on perception and judgement of work, with four value 

labels ranging from “always” to “never” (in Dutch: VBBA, van Veldhoven and 

Meijman 1994). Th is subscale appeared in every questionnaire.  Age was divided 
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in the following categories: 18–30, 31–40 and >40 years. Computer experience 

was dichotomized (≤ 10 years (1) and >10 years (2)), since a continuous scale 

resulted in too much correlation with age category. Job demand, decision latitude 

and worrying were analysed on a continuous scale. 

Complaints of arm, neck and/or shoulder (CANS) were identifi ed with 

questions of an adapted and translated version of the DASH (Disabilities of the 

Arm, Shoulder and Hand, Hudak et al. 1996). We used the DASH subscale “sever-

ity of complaints”, that had 7 items. Instead of recalling complaints in the past 

week, as used in the original version, we asked participants to recall complaints in 

Figure 3.1: Amount of days (x-axis) that is needed to reliably estimate the six-month exposure 
period with a corresponding coeffi  cient of variation (CVd, y-axis), including 10–90% of all partici-
pants (diff erent lines). In the current study, setting the CVd threshold at a maximum of 10% of the 
average duration measured over all days (thick horizontal line) including 90% of participants 
(top line with circles) resulted in a minimum of 44 measured days per participant per six months 
(see arrow at thick line).
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the preceding 6 months, with fi ve value labels ranging from “no complaints” to 

“very serious complaints”. Participants answering “moderate complaints” to “very 

severe complaints” to at least one of the DASH questions were classifi ed as hav-

ing CANS.CANS was tested on an ordinal scale; no (0), acute (1) or chronic (2) 

CANS. In acute CANS, participants reported CANS in the current questionnaire, 

but no CANS in the previous questionnaire. Participants with chronic CANS 

reported CANS in both questionnaires.

Th e answer categories of the question on computer work duration (2–4h, 

4–6h, >6h) were replaced with values of 2, 4 and 6 hours, respectively, as a conserv-

ative measure of self-reported work duration. In order to quantify the accuracy of 

participants estimating computer use duration, we calculated the relative bias (RB) 

as follows: (self-reported duration - registered duration) / (registered duration). 

Statistics 

For each participant, registered work duration from the software was averaged 

across all working days of the six months preceding a fi lled-in questionnaire. We 

tested whether participants’ relative bias (RB) in self-reported computer use dura-

tion could be explained by personal or psychosocial characteristics. We found that 

relative bias (RB) did not follow a normal distribution. Th erefore, we tested two 

derivatives of RB for normality, namely the natural logarithm (ln) of RB and the 

absolute value of RB. Although these values were both not normally distributed 

either, the distribution of the absolute values of RB approached normality, and all 

values were valid, contrary to ln(RB), in which the negative values of RB (13%) 

were discarded. We therefore decided to use the absolute value of relative bias 

(aRB) in the analyses.  

A linear mixed model (LMM) was used to fi nd possible determinants of the 

level of aRB. We chose this analysis because it is designed to handle correlated data, 

and it uses all available data during follow-up, regardless of the number of meas-

urements per subject (Krueger and Tian 2004). Th e seven possible determinants 
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of aRB were gender, age, years of computer experience, CANS, worrying, psy-

chological job demands and decision latitude. Th ese factors were entered as fi xed 

eff ect variables, while the repeated measurements (up to three per participant) 

were the random part of the model. Akaike information criterion (AIC) was used 

as measure of the overall fi t of the model, since it attempts to fi nd the model with 

the least parameters possible to best explain the data. Th e model with the smallest 

AIC was retained. For the covariance structure, we used the compound symmetry 

covariance structure, which assumes equal within-worker variance (correlations 

between repeated measurements are the same, regardless of the time lag between 

individuals) as well as between-worker variance (variance between workers is equal 

across all fi xed determinants of exposure) (Burdorf 2005). Th e LMM was con-

ducted using the procedure Proc Mixed in SAS software version 8 (SAS Institute 

Inc., Cary, NC, USA).



Chapter 3

56

3

Results

Response

Of our total set of 221 participants, 180 participants met the above criterion of at 

least 44 days of registered computer use in a measurement period of six months, 

and their recorded work days and questionnaires were included in the fi nal dataset. 

On average, we recorded 79 (±19) days per participant per measurement period. 

Characteristics of the participants are shown in Table 3.1. No signifi cant diff er-

ences in the used variables were found between the initial dataset (N=221) and 

the selected participants (N=180). 

Accuracy of estimation

In Figure 3.2, both the registered (black crosses) and self-reported (grey rectan-

gles) work duration are shown for all three answer categories. Note that there is 

signifi cant variability in registered duration across participants for all three answer 

categories (wide distribution of the data points in Figure 3.2 and large standard 

deviation in Table 3.1). Relative bias (RB) was on average 0.55 (± 0.56 SD), mean-

ing that self-reported duration across all three answer categories was on average 

55% higher than the registered duration. Note that there were participants who 

correctly estimated their computer use duration, while in 13% of all measurements 

RB was negative (i.e. computer use duration was underestimated). Th e level of 

relative bias was dependent on the self-reported category; RB (2–4 hrs) = 0.13 (± 

0.40), RB (4–6 hrs) = 0.52 (± 0.56), RB (>6 hrs) = 0.82 (±0.47). For every extra 

hour that participants reported to work longer, their relative bias increased by 17%. 

Th e absolute level of RB (aRB) was on average 0.62 (± 0.487, range 0 to 2.80). 

Furthermore, aRB had a large variance (0.237). 
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Determinant Categories n Mean (± SD) Range

Gender male 54 - -

female 126

Age (year) 20–30 55 37.5 (± 10.0) 20–60

30–40 54

>40 71

Computer experience 
(years)

0–10 78 11.2 (± 4.7) feb-34

>10 94

MSC no MSC 105 - -

acute MSC 71

chronic MSC 142

JCQ psychological job 
demands

low (≥0 & <11) 88 11.9 (± 2.3) 5–18.75

(range: 0 – 20) middle (≥11 & <13) 131

high (≥13 & ≤20) 90

JCQ decision latitude 308 26.3 (± 2.8) dec-35

(range: 12 – 48)

VBBA worrying 318 39.3 (± 11.1) 0–83.3

(range: 0 – 100)

Computer duration 
(registrated average 
hours:minutes/day)

2–4 hours 57 2:00 (0:42) 0:53–3:49

4–6 hours 148 3:00 (1:18) 1:07–11:25

> 6 hours 113 3:33 (1:11) 1:35–10:45

Table 3.1: Description of all potential contributing factors to absolute relative bias (aRB). Dis-
crepancies in amount of measurements (n) arise from the fact that the factors gender, age and 
computer experience all had one data point per subject (nmax=180), while the other variables had 
up to three data points per subject (nmax=318).
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Relative bias for diff erent subgroups of participants

Table 3.2 presents the results of the mixed-eff ect model, demonstrating that female 

gender and higher psychological job demands had a signifi cant eff ect on the abso-

lute level of relative bias (aRB). Males were found to have a lower aRB than females, 

and aRB increased with increasing psychological job demands. On average, females 

had a 0.22 larger aRB than men (Table 3.2), meaning that ((0.22/0.62)*100=) 

35% of the level of aRB was attributable to gender. Secondly, the eff ect of JCQ 

job demands was calculated by the multiplying the estimate by one SD, which 

is (0.025*2.3=) 0.058 for every unit increase, meaning that every increment of 

Figure 3.2:  The relationship between self-reported and registered computer use duration for every 
participant and questionnaire. The three grey blocks indicate the range of self-reported categories 
(2–4 h, 4–6 h and >6 h).The registered duration of every measurement is indicated by a black 
cross, and black open circles indicate the mean registered duration for every self-reported dura-
tion category. 
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one standard deviation in job demands explained the level of aRB by 10%. Or, 

put diff erently, including the factors gender and psychological job demands to 

the model decreased the systematic bias in aRB with 45%.  However, these two 

factors only slightly altered the within-worker component of variance ( 2
w) (6.5% 

reduction from 0.114 to 0.107), and left between-worker variance ( 2
b) virtually 

unchanged (1.9% reduction from 0.124 to 0.121). Also, a large confi dence interval  

surrounded the mean estimates for gender and job demands (Table 3.2).

Factors that didn’t contribute to the explanation of aRB were age, years of 

computer experience, CANS, worrying, decision latitude and measurement. Th e 

fact that measurement (questionnaire 1, 2 or 3) did not contribute to the model  

indicates that the level of relative bias was stable over questionnaires, and thus that 

participants were relatively consistent in their level of estimation. 

Determinant Estimates (±SE) σ2
w

σ2
b

95% CI

Intercept only 0.60 0.114 0.124 0.54 to 0.67

Intercept 0.37 0.107 0.121 0.07 to 0.68

Female gender 0.22 (±0.071) 0.08 to 0.36

Job demands 0.025 (±0.013) 0.00009 to 0.050

Table 3.2: Coeffi  cients for factors contributing signifi cantly (p<0.05) to the explanation of relative 
bias (aRB), analysed by a linear mixed model (LMM). 95% CI is the 95% confi dence interval, SE is 
the standard error, σ2

w is within-worker variance, σ2
b is between-worker variance.
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Discussion

As compared to registration software, participants overestimated their computer 

work duration on average by 55% (RB 0.55), which is roughly 1.5 hours per day. 

In the current study, the absolute relative bias, which was used as outcome measure, 

was on average 0.62. Higher psychosocial job demands and female gender were 

signifi cantly associated with deviation from measured computer use duration. An 

increase in job demands of one standard deviation accounted for about 10% of 

this overestimation, whereas female gender explained about 35% of the overesti-

mation. However, these two factors only slightly reduced the within-worker ( 2
w) 

and between-worker variance ( 2
b) components of variance (with 7 and 1.9%, 

respectively). Moreover, the outcome measure aRB had a large variance (0.237), 

and the determinants of aRB (gender and job demands) had large confi dence 

intervals (see Table 3.2). 

Factors infl uencing relative bias

Th e systematic bias in aRB could be reduced by 45% by the factors gender and 

psychosocial job demands. Th e other tested factors (age, years of computer experi-

ence, CANS, worrying, decision latitude and measurement) did not signifi cantly 

contribute to the model. Below, we will discuss some of these factors and possible 

explanations for the (lack of ) infl uence on the aRB. 

Gender
In our study as well as the study from Mikkelsen (2007), females were found to 

report computer use duration less accurately than men. However, other studies 

did not fi nd a diff erence in overestimation between genders (Balogh et al. 2004, 

Douwes et al. 2007, Faucett and Rempel 1996). In the studies measuring estima-

tion in duration, gender was often not equally distributed among participants 

(100%, 74% and 79%, (Lassen et al. 2005, Mikkelsen et al. 2007, Unge et al. 
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2005, respectively). Th rough the LMM we performed, we were able to quantify 

the eff ect of gender on the systematic bias in aRB (  was 0.22, see Table 3.2). 

Th e fact that he studies described above did not fi nd any eff ect of gender on RB 

is probably explained by the lack of discriminative capacity to show the small 

infl uence of gender on RB. It is of interest to note that the overestimation among 

women was presented in all three categories of self-reported duration of computer 

use (data not shown).

Psychosocial characteristics
Apart from psychosocial job demands, the other two measures of psychosocial 

work characteristics (worrying and decision latitude) did not signifi cantly infl u-

ence the level of aRB. Similar to the results of the current study, Mikkelsen et al. 

and Faucett and Rempel analysed the infl uence of several psychosocial variables 

and only found a small signifi cant infl uence of psychosocial job demands in the 

level of overestimation (Faucett and Rempel 1996, Mikkelsen et al. 2007). Fur-

thermore, Hooftman et al. found that women reported both higher job demands 

than men and higher exposure to physical risk factors, which corresponds to our 

model (Hooftman et al. 2005). Similar to the eff ect of gender, the overestimation 

due to higher psychosocial job demands was very similar across the three categories 

of self-reported computer use duration.

Musculoskeletal complaints (CANS)
In the current study, CANS did not infl uence the level of aRB. However,  IJmker 

et al. found a better agreement between self-reported and registered duration in 

participants with arm, wrist and hand symptoms compared to participants without 

symptoms (2008). Mikkelsen et al. (2007) found a positive eff ect of arm pain on 

the level of computer and mouse duration estimation, but did not fi nd an eff ect 

of neck-shoulder pain, and even found a negative eff ect of arm pain on keyboard 

duration estimation. In these studies, the diff erences in methods of the studies 

could have infl uenced the relationship. Th e measurement period and recall period 
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diff ered between studies, and the defi nition of CANS in questionnaires was not 

standardized. Th e fact that we didn’t fi nd an eff ect of CANS on the level of aRB 

indicates that response bias of participants with CANS did not infl uence the level 

of aRB. Another reason that we did not fi nd an infl uence of CANS on the level 

of aRB might be because of the long measurement period (six months); with this 

method, we are not sure whether participants with CANS experienced CANS 

throughout the whole measurement period and therefore whether they estimated 

their computer use diff erently during an episode of complaints. A shorter meas-

urement period or more frequent questionnaires might be necessary in order to 

analyse the infl uence of CANS on aRB.

Physical exposure
Prolonged duration of physical exposure is an important risk factor for the devel-

opment of musculoskeletal disorders according to one of the leading etiological 

models of CANS (‘Brussels Model’, Johansson 2003). Th erefore, in quantifying 

computer use duration that is representative for duration over a longer period of 

time, it is vital to measure computer use reliably, and thus to account for variability 

in duration between days. In previous studies, duration of computer use was only 

measured with software for a short period of time (Faucett and Rempel 1996, 

Heinrich et al. 2004, Homan and Armstrong 2003, Unge et al. 2005). Th is short 

period of measurement may not represent natural, everyday duration, especially 

since we found a high variability in duration between days in the current study 

(steepness of lines, representing CV, in Figure 3.1). Especially with less than about 

fi ve days of measurement, between-day variability in duration is too large to rep-

resent average duration over six months. Even though the offi  ce workers on the 

current study all had computer work as their main task, computer use duration 

is thus more variable than previously thought.  
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Defi nition
Furthermore, although in the questionnaire we stressed the fact that all ques-

tions applied to participants’ work situation in the past six months, we did not 

emphasize this again in the question concerning computer use duration. Th e exact 

question that was asked each time was: ‘On average how many hours per day do 

you work with a computer at work?’ Th erefore, it was possible that participants 

had a much shorter recall period in mind than the six months we measured dura-

tion with software. Although we did not test this, aRB might have been smaller  

with either an unambiguous question on computer use duration or with a shorter 

measurement period. In previous studies, the measurement period of the above 

described studies ranged from one day to one year. However, in the only studies 

that measured computer use duration for more than a few days, the amount of days 

that computer use was actually registered within the total measurement period was 

not described (Lassen et al. 2005, Mikkelsen et al. 2007, IJmker 2008). Th is ham-

pers a solid comparison between methods of duration estimation across studies, 

since it does not provide information on the between-day variability in duration.

Th is study used RB as measure of disagreement between self-report and 

registration measurements. About 13% of all measures had a negative value of RB, 

implying an underestimation of computer use. Th e negative values were primarily 

observed in the self-reported category 2–4 hrs/day and had relatively small magni-

tude (see Figure 3.2). In the statistical analysis, the absolute bias (aRB) was used 

in order to comply with normality assumption in the regression analysis. Th is may 

have resulted in some underestimation of the within-worker variance, but most 

likely has only had a small eff ect on the systematic overestimation. 
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Conclusion

When comparing computer use duration between self-reports and registration 

software, self-reported duration deviated on average 62% from registered dura-

tion (aRB 0.62). Gender and psychosocial job demands accounted for 45% of the 

systematic diff erence in aRB, but self-reports hardly explained any of the variance. 

However, since the outcome measure aRB had a large amount of variation between 

participants, and a large variation was also present within categories of gender and 

job demands, the predictive value of the two factors was low. Th is suggests that 

comparing these two measures introduces a large amount of random variation 

and indicates that self-reported and registered computer use duration measure a 

diff erent construct of computer use duration.  
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Abstract

Th e study investigated the natural work-pause pattern of computer users and the 

possible eff ects of imposing pause regimes on this pattern. Hereto, the precise tim-

ing of computer events was recorded across a large number of days. It was found 

that the distribution of the pause durations was extremely skewed and that pauses 

with twice the duration are twice less likely to occur. Th e eff ects of imposing pause 

regimes were studied by performing a simulation of commercially available pause 

software. It was found that depending on the duration of the introduced pause, 

the software added 25–57% of the pauses taken naturally. Analysis of the timing 

of the introduced pauses revealed that a large number of spontaneous pauses were 

taken close to the inserted pause. Considering the disappointing results of stud-

ies investigating the eff ects of introducing (active) pauses during computer work, 

this study has cast doubt on the usefulness of introducing short duration pauses.
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Introduction

It is commonly acknowledged that physical load factors such as excessive force, fre-

quent bending and twisting, repetitive motions and static posture contribute to the 

occurrence of musculoskeletal complaints of arm, neck and/or shoulder (CANS). 

Consequently, guidelines (CEN 1995, Fallentin et al. 2001), standards (CEN 

1995) and national legislation (European Communities 1990, Swedish National 

Board 1998) have been implemented to promote variation in loading patterns.

However, recent reviews of the literature by Burdorf et al. (2003) and Mathi-

assen and Christmansson (2003) indicate that the eff ects of increasing variation 

are only supported by vague or indirect empirical evidence. Th ese authors argue 

that there are only few studies explicitly addressing variation and CANS and that 

there are insuffi  cient methods for quantifying variation. 

For example, one of the most frequently recommended interventions against 

CANS is the introduction of more rest breaks (Dababneh et al. 2001, Galinsky et 

al. 2000, Genaidy et al. 1995, Henning et al. 1997, Kopardekar and Mital 1994, 

Mathiassen and Winkel 1996, McLean et al. 2001, Sundelin and Hagberg 1989). 

A reason why the eff ects of short organized rest breaks on fatigue and discomfort 

have been shown to be only weak might be that the additional rest breaks are 

not suffi  cient to signifi cantly alter the work-pause pattern. Th at is, the additional 

breaks might not contribute signifi cantly compared to the large amount of vari-

ation already obtained through natural and regulatory breaks present in the job, 

and through exposure variability associated with the task(s).

In recent years several innovations have been developed to adjust break 

schedules to the actual work load, taking into account the breaks that users take 

naturally. In particular, during computer use, work can be regulated by pause soft-

ware, which can administer additional pauses depending on the actual computer 

use of an individual user. Such pause software works by administering a pause of 

a particular length when a period of continuous computer use (without pauses) 

has been exceeded (computer use limit). A threshold (non-computer threshold or 
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NCT) is used to defi ne how far two recorded computer events are allowed to be 

separated in time to be classifi ed as continuous work. For instance, a NCT of 30 

seconds would mean that the time between all recorded computer events larger 

than 30 s is classifi ed as a pause. When a particular pause regime is implemented, 

several computer use limits are often used simultaneously, after each continuous 

period of use a corresponding pause of a particular duration is administered (pause 

duration). So, computer users receive both micro pauses (5–30 s) after a relatively 

short period of computer use and macro pauses (5–30 min.) after longer periods 

of use.

From studies using both self-administered questionnaires and external 

observers, it is known that users tend to overestimate the time they work behind 

the computer (Burdorf and van der Beek 1999a, Faucett and Rempel 1996, Hein-

rich et al. 2004, Homan and Armstrong 2003, Van der Beek and Frings-Dresen 

1998). Some studies (Heinrich et al. 2004, Homan and Armstrong 2003) have 

therefore investigated whether work times, as measured by pause software or by 

external observers, correspond. Results indicate that a NCT between 20 and 30 

s yields work times in reasonable correspondence with the work times reported 

by observers.

Th e choice for the specifi c values of pause duration, computer use limit 

and NCT that make up the pause regimes seem arbitrarily chosen. Th at is, no 

research has been published on how these regimes alter the total number of pauses 

that computer workers take. Th is is surprising since this software is used by over 

a million computer users worldwide (i.e. www.workpace.com), forms an impor-

tant method for regulating the amount of time spent behind the computer, and 

is used to guide (inter)national legislation (European Communities 1998, 1990) 

regarding workload during computer use.

Since pause software developers claim that their software reduces the risk of 

developing CANS, the authors were interested as to what extent the implemen-

tation of additional breaks can alter the work-pause pattern of computer users. 
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Whether the administration of additional pauses has possible health benefi ts is 

beyond the scope of the current study.

In order to precisely determine the time-pattern of computer use during a 

working day, a new software tool was developed. Th is software records, during 

normal computer use, the times at which the mouse and the keyboard are used. 

Th is enables the authors to reconstruct time traces over extensive periods of time 

for a variety of computer users.

In order to determine the computer user’s natural working behaviour, a 

detailed analysis on the recorded time traces was performed. To study the eff ect of 

diff erent pause regimes on worker’s pattern of computer use, this study performed 

a simulation of how this pattern, as measured by the registration software, would 

be altered under the infl uence of diff erent pause regimes. Th at is, based on the cri-

teria and thresholds that make up a pause regime, pauses of specifi c durations were 

inserted in the recorded time traces. Using a simulation, instead of administering 

diff erent pause regimes to diff erent users in a controlled trial, made it possible 

to estimate the potential eff ects of a whole range of changes in the work-pause 

schedule without being infl uenced by non-compliance of the users, compensation 

for non-work periods (speeding-up) and other confounding factors that might 

infl uence users’ working behaviour.

Th e current study posed the following specifi c questions regarding the tem-

poral variability of computer use and the infl uence of imposing diff erent pause 

regimes:

1. What are the natural pause patterns that users display?

2. How many pauses would pause software administer to the users and how 

do these numbers compare to the number of pauses taken spontaneously?

3. Is the timing of the inserted pauses appropriate, that is, how long would 

it take before a computer user would take a similar pause spontaneously?
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Methods

Custom-built registration software was installed on the computers that were used 

by 20 healthy employees of the academic hospital in Rotterdam, the Netherlands. 

Participants signed informed consent before entering the study. Before the start 

of the study participants fi lled in a small questionnaire in which they were asked 

about their computer use. Th e participants (mean age: 33.9 (SD 8.7) years) per-

formed a variety of computer-intensive tasks; eight had an administrative job, six 

were researchers and six had managerial or other functions. Th e male (n = 9) and 

female (n = 11) participants estimated that they worked for 5.5 (± 1.1) h/d behind 

the computer and spent 22.4 % (± 15.9) of their time doing other work. Th ey also 

reported taking on average 1.5 (± 1.3) scheduled rest breaks (lunch, coff ee etc.) 

during a working day. Of the participants, 14 worked behind a single computer 

while six worked with two computers. According to the participants, they worked 

on average for 36.4 (± 7.7) h per week.

Th e software registered with a frequency of 10 Hz the position of the cursor 

(x, y coordinates in pixels), whenever this position changed. Additional events 

that the software recorded were key presses, mouse clicks and mouse wheel use 

(temporal resolution 0.1 s).

Th e software logged these data in the background in order not to interfere 

with the regular work of the participants. Participants could view daily statistics 

on their computer use, such as number of keyboard strokes, mouse clicks, mouse 

moves, etc. Participants were made aware that their computer usage was monitored 

as part of a study investigating computer usage patterns. Participants were not 

told that their pause behaviour would be studied. Th e unobtrusive nature of the 

installed monitoring software ensured that they quickly forgot that they were being 

monitored. It is therefore highly unlikely that participants altered their working 

behaviour as a consequence of participating in the study.

Data were collected centrally and processed offl  ine. A sample of 50 workdays 

of each participant was selected to ensure the data fi les (for each participant for 
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every day) contained suffi  cient data. Data fi les containing less than 15000 events 

were not selected.

Data processing

For each of the 1000 recorded fi les, the times were extracted at which an event (a 

mouse movement, mouse click, mouse wheel use or keyboard stroke) was recorded. 

Th ese time series, in which no distinction was made between the diff erent types 

of events, were used to calculate the distributions of pause durations for each 

participant and day. In order to compare these distributions across participants 

and days, coeffi  cients of variation (CV) were calculated, across participants and 

days, for a range of pause durations.

Additionally, the obtained time traces were used to simulate the eff ects of 

pause software. To this end, the standard regimes administered by the most com-

monly used (approximately 800000 user-licences) pause software in the Neth-

erlands were implemented; Workpace (Wellnomics Ltd., Christchurch, New 

Zealand).

Th ese pause regimes vary in the level of altering the natural pause behaviour 

of computer users. Table 4.1 shows the settings for all the regimes. Th e regimes 

consist of implementing micro pauses (durations varying from 5 to 30 s) and 

macro pauses (5 to 30 min pause) after a specifi c duration of computer use has 

been exceeded (computer use limit). On top of this, a daily limit on the total 

amount of computer use could be imposed (Table 4.1). In accordance with the 

Workpace software, a NCT (non-computer threshold) of 30 seconds was used. 

During the simulation the appropriate pause was inserted after the computer use 

limit was reached (see Table 4.1). Since the duration of the micro pauses was always 

smaller than the NCT, the insertion of macro and micro pauses could be done in 

subsequent steps. Th is yielded simulated time series of days with pauses imposed 

according to each of the regimes. As can be seen in Table 4.1, the last seven regimes 

are only used for people recovering after CANS and have extreme limitations on 
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the computer work that can be performed during a day. As all the participants 

were without CANS during the period of recording and worked considerable 

hours behind the computer, simulation of the data for these last regimes would 

therefore yield results beyond what is normally expected from a working person 

(i.e. working hours >12 h). Th e results from the simulations of these regimes are 

therefore not reported.
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1 (normal prevention) 30 8 5 60 5 -

2 (normal prevention) 30 7.5 8 50 5 7

3 (normal prevention) 30 6 8 45 6 6.5

4 (past complaints) 30 5 9 45 7 6

5 (past complaints) 30 4.5 10 45 6 6

6 (past complaints) 30 4 10 40 8 5.5

7 (recovery complaints) 30 3.25 12 30 10 4.5

8 (recovery complaints) 30 3 15 20 10 4

9 (recovery complaints) 30 2.5 20 18 15 3

10 (recovery complaints) 30 2 30 10 20 2

11 (recovery complaints) 30 2 30 10 25 1.5

12 (recovery complaints) 30 1.75 30 10 25 1

13 (recovery complaints) 30 1.5 30 10 30 0.5

Table 4.1: The pause regimes used by the Workpace software. Regime 1 administers a 5 s pause 
after 8 min of consecutive computer use (i.e. without pauses larger than 30 s) and a 5 min pause 
after 1 h of computer use. No limit on the amount of computer hours per day is imposed for this 
regime. Regimes 7 to 13 are recommended when computer users are recovering from CANS. Since 
our participants were healthy volunteers, only regimes 1 to 6 were used in our simulation analysis.
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Results

Natural computer pauses

On average 50618 events were recorded for each participant every day (range 

17772–97000, SD between participants averaged across days: 14742; mean SD 

over days, within participants: 9430). Considering that these events could be as 

close as 0.1 second apart, the total number of the events corresponds to less than 

85 minutes of continuous computer use each day. In contrast, the total time 

Figure 4.1: Histogram of the number of events per 30 s for a participant during one particular day.
The empty bins (white) show the distribution of pauses over the day. This participant, a research 
scientist, started working behind the computer at 11.10 a.m. and stopped just before 5 p.m. on 
2 March 2005.
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participants worked with the computer, that is, the time from the fi rst recorded 

event until the last one for a particular day was on average 8 h and 33 min (SD 

1.19 h).

Participants exhibited a great number of natural computer pauses of diff er-

ent duration during the day. Figure 4.1 shows the number of events for every 30 

s interval during a working day of one of the participants. As can be seen, both 

the duration and timing of the (natural) pauses taken by a participant can vary 

considerably.

To gain insight into the distributions of pause durations, the number of 

pauses per hour was counted for a range of pause durations. Th e short duration 

pauses occur more frequently than the longer duration pauses. For instance, the 

Figure 4.2: Histogram of pause durations for the diff erent participants (the diff erent lines), across 
all days. Both axes are on a log scale. 512 to 1024 s is approximately 8.5 to 17 min.
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majority (96.2%) of all pauses are shorter than 1 s. For pauses larger than 0.5 s, as 

can be seen in Figure 4.2, a two-fold increase in pause duration leads to a decrease 

in the number of pauses by a factor of approximately two. Th e straightness of 

the curves in the log-log plot of Figure 4.2 indicates that the pause distribution 

follows a power law.

Th e variability between participants, as shown in the spread of the diff er-

ent lines in Figure 4.2, can partially be explained by the intensity with which 

participants worked during each of the 50 days of recording. Th at is, the more 

intensely a user works, the more events are recorded each hour, thereby increasing 

the number of pauses between those events. Th e lines of the diff erent participants 

run in a band. Th is was refl ected in CV across participants that were independent 

of the pause duration (0.29 ± 0.06). Th e CV for variability across days (within 

participants) for the diff erent pause durations was somewhat lower (0.22 ± 0.03).

When a NCT of 30 s was applied, it was found that on average (across days 

and participants) a working day consisted of 64 working periods, with a mean 

duration of 4 min (see Table 4.2). Th e longest period of continuous computer use 

(mean over all participants and days) lasted almost 0.5 h. Th e average duration of 

the pauses in between the working periods was somewhat longer, with the longest 

Non-computer threshold (s) 1 10 30 100

% workday classifi ed as 'com-
puter work'

26.7 (7.1) 40.4 (8.9) 45.6 (9.2) 52.7 (9.2)

Number of work periods 1839 (424) 158 (37) 64 (16) 26 (7)

Pause duration (min) 0.2 (2.3) 2.2 (7.8) 5.1 (12.1) 11.2 (17.3)

Longest pause (min) 74.0 (42.0) 74.0 (42.0) 74.0 (42.0) 74.0 (42.0)

Work time duration (min) 0.1 (0.1) 1.4 (2.1) 4.0 (5.7) 11.1 (13.6)

Longest work time (min) 1.3 (0.4) 13.2 (4.5) 27.5 (9.1) 50.8 (13.4)

Table 4.2: Characteristics of the working day averaged across participants and days. How many 
events are classifi ed as work, depends on the NCT used. Calculated here is the number and dura-
tion of the (longest) working periods and pauses under four diff erent NCTs (1, 10, 30 and 100 s). 
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pause lasting on average 1 h and 14 min. Note that the pause duration is much 

more variable than the duration of the working periods. Th is was refl ected in a 

42% smaller CV for the working periods.

Artifi cial computer pauses

During the simulation, pauses were inserted every time the computer use limit 

was exceeded. In Figure 4.3 the number of inserted pauses is shown for the fi rst 

six pause regimes across all participants and days. It should be noted that the 

majority (89%) of pauses that are administered are micro pauses and that the more 

Figure 4.3: Mean number of micro (a) and macro pauses (b) per day inserted for all pause regimes 
across participants and days. Error bars are standard deviations for variability across participants.
The numbers in the bars are the durations of the pauses for that regime. Note the diff erent scales
on the y-axis.
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stringent the regime becomes, the more pauses are administered. Th e daily limit 

of computer use is not taken into consideration in the analyses.

In addition to the additional pauses introduced by the simulation, partici-

pants took a great number of natural pauses of similar duration as the introduced 

pauses during each workday (as already shown in Figure 4.2). Using Figure 4.4, 

the number of pauses before and after the implementation of the pause regime 

can be compared. For each pause regime, the number of pauses with a length cor-

responding to the duration of the inserted pause or larger is shown. It should be 

noted that the number of pauses given on top of the ones that occur naturally is 

rather small, especially for the micro pauses. For the micro pauses, on average 25% 

more pauses are inserted across the six pause regimes. Th is percentage increases 

with the stringency of the pause regime (from 9 to 39%). For the macro pauses, 

the number of additional pauses is larger; for regime 1 there are 32% more pauses 

Figure 4.4: Number of micro (a) and macro pauses (b) before and after pause insertion for six pause 
regimes across participants and days. Error bars are standard deviations for variability across 
participants. Note the diff erent scales on the y-axis.
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added while for the last regime, 83% more pauses are administered than occur 

naturally. On average 57% more macro pauses were inserted.

Changes in the duration of the working day

Th e inserted pauses in the simulation lengthened the working day by an amount 

equal to the summed duration of all inserted pauses. For the six pause regimes 

studied, the working day increased on average by 37 min (7.2%). If the workers 

had been working with pause software on their computer, they would most likely 

reduce the number of spontaneous pauses, having a pause already administered 

by the software. Th e above increase in working day should therefore be seen as 

an upper limit. Based on an NCT of 30 s, on average 46% of the total time the 

computer was on was classifi ed as ‘computer work’, this would come down to 

approximately 4 h of computer use per day. Since this amount of time was far 

below the daily limit of computer use, only in 3% (range 0 to 11.7%) of the days 

this limit was reached during simulation of the six pause regimes. Th e total amount 

of time classifi ed as ‘computer work’ hardly increased for the six pause regimes 

studied (maximally 8 min for regime 6). Because ‘computer work’ is defi ned by an 

NCT of 30 s, pauses smaller than 30 s will lead to an increase of the total amount 

of ‘computer work’ performed. Counter intuitively, this means that by adding 

micro pauses, work time is increased.

Pause software intervention

For each of the pause regimes, a certain amount of computer use needs to be 

exceeded (computer use limit) before a pause is administered. Th e time diff erences 

were calculated between the moments an artifi cial pause would have been admin-

istered and the subsequent moment a natural pause of equal or greater length 

occurred. Th is time diff erence is a measure of the amount of time participants 

would be stopped using the computer earlier than they would naturally do (or 
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the amount of time participants continue to use the computer while the software 

would have stopped them). Th ese data, averaged across all participants and days 

and for the six pause regimes, are shown in Figure 4.5. Figure 4.5a (compare the 

top two lines) shows that for short duration pauses the software administered the 

pause only shortly (45 s (=8%)) before the natural pause would occur and that 

this time increases with the stringency of the imposed pause regime (up to 2 min 

or 32% earlier). In contrast, Figure 4.5b shows that this time diff erence is much 

larger for the macro pauses. Participants are stopped much earlier (on average 53 

Figure 4.5: The amount of time after a pause of 30 s or more before the software would notify the 
user to take a micro (4.5a) or a macro (4.5b) pause is shown in the lines with the square markers.
The top lines show the time it took participants to spontaneously take a pause of a length equal 
or greater than the one just administered. Since the NCT is larger than the administered micro 
pauses, participants also showed micro pauses preceding the inserted pause. The lower line in 
(a) shows the time at which the previous pause of equal or greater length was spontaneously 
taken. The open circles indicate the number of pauses of these durations taken in the period up to 
administration of the pause. Timing of these pauses is not taken into consideration and numbers
are rounded off  to integers (for actual values see text).
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min (=52%)) than they would naturally do. Dependent on the stringency of the 

regime this eff ect becomes even larger (from 45 to 64 min earlier (= 43 to 61%)).

Since the administered micro pauses have a duration which is shorter than 

that of the NCT, micro pauses of the same length could also have occurred in the 

‘computer work period’ prior to the administration of the micro pause. It was cal-

culated at what time before the insertion of the micro pause the last spontaneous 

micro pause occurred. Th ese time points, averaged across participants and days, 

are shown in Figure 4.5a in the bottom line. As can be seen in this graph the time 

diff erence between the spontaneous pauses before and after the inserted micro 

pause are quite similar (due to the random distribution of the pauses). 

Additionally, the number of micro pauses, with a length larger than the 

administered pause, was calculated in the computer use period prior to the admin-

istration of the pause.Th ese numbers are indicated in Figure 4.5a by the number 

(rounded off  to integers) of open circles below the line of inserted pauses. Th e 

actual values for the six regimes were: 8.76; 4.15; 3.27; 2.22; 1.65; 1.44 pauses. 

Th e timing of these pauses was not calculated.
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Discussion

In the Introduction, three questions were asked regarding the possible eff ects of 

pause software on computer use. Th e answers to these questions and the generality 

of the results will shortly be addressed. Subsequently, the following section will 

discuss how the current results should be interpreted in the light of possible health 

benefi ts of pause software.

What are the natural pause patterns that computer users display? Th e results 

show that the distribution of pauses, the time between two computer events, is 

extremely skewed. Th at is, the vast majority (96%) of pauses are shorter than 1 

s and only a small number of pauses are of long duration. Th e distribution of 

pause durations follows a power law with a slope of approximately - 2, meaning 

pauses with twice the duration are twice less likely to occur. Such distributions of 

waiting times have been found in the distribution of a large number of human 

activities, such as the times between sending emails, between telephone conversa-

tions, between words during speech production and other forms of communica-

tion (Barabasi 2005). Th e variability of the pause distributions, as expressed in 

the CV, was somewhat larger across participants than over days (0.29 vs. 0.22), 

which means that participants apparently show some personal trends (intensity 

of work) in how their pause durations are distributed. Th is indicates that it might 

be possible to identify computer users by their work-pause patterns.

When a NCT of 30 seconds was applied, the work-pause pattern consisted 

of on average 64 short duration (4 min) work periods, interlaced with slightly 

longer pause periods (5 min). Th e duration of the work periods was less variable 

(a 42% smaller CV compared to that of the pauses; see Table 4.2). Moreover, the 

longest pause lasted on average more than twice as long as the longest working 

period. Th e work-pause pattern of computer users can thus be described as a 

highly intermittent behaviour with short duration work periods being followed 

by slightly longer, and very variable, pauses.
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How many pauses does pause software administer and how do these pauses 

compare to the number of pauses taken spontaneously? When the simulation of 

the pause software was applied, pauses of diff erent durations were inserted when a 

computer use limit was exceeded. For an average working day of 8.5 h, 38 micro 

pauses (5 to 10 s) and 4 macro pauses (5 to 8 min) were administered, a nine-fold 

diff erence. Compared to the number of pauses taken spontaneously, an additional 

25% micro pauses were inserted. For the macro pauses, an additional 57% pauses 

were inserted compared to the number of natural pauses with the same or longer 

duration. Th e inserted pauses add on average only 7.2 % extra pause time to a 

working day. Only in a very small percentage (3%) of the days a day limit would 

be imposed.

Is the timing of the inserted pauses appropriate? Th e number of pauses that 

the software would administer seems to be quite signifi cant when compared to the 

number of pauses taken spontaneously. However, upon further examination into 

when these pauses were inserted, it was found that, specifi cally for the micro pauses, 

a large number of spontaneous pauses was taken just before and after the inserted 

pause (see Figure 4.5). Th e spontaneous pauses just before and after the inserted 

micro pause occurred on average within 90 s. Th is means that pause software, 

through the administration of micro pauses, does not seem to alter the work-pause 

pattern of computer users to a large extent. For longer duration pauses (5–8 min), 

the software would administer a pause long before the computer user would take 

a pause of equal or a longer length, spontaneously. Th e administration of longer 

duration pauses, although they compromise only 11% of the total amount of 

pauses, seems therefore to be a method for altering the work-pause pattern.

Sensitivity analysis

Because of our choice of simulating the eff ects of pause software, instead of 

comparing groups working with and without the software, we ensured that the 

study was not hampered by non-compliance of participants, nor infl uenced by 
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compensatory strategies that participants might use in response to an imposed 

pause, such as speeding up computer use. Th is means that the presented data are 

most likely an overestimation of the possible eff ects of pause software on the tem-

poral characteristics of computer users. Since participants were not informed about 

the nature of our analysis and the monitor software was running unobtrusively 

in the background, participants were only minimally aware that they were being 

monitored. Th e authors are therefore convinced that the recorded time traces are 

representative of the natural working pattern of the participants.

In order to study the generality and robustness of our simulation results two 

sensitivity analyses were performed. First was the analysis of whether the choice 

of data, only selecting fi les with a large amount of recorded events, could have 

infl uenced the results. Th erefore, the results were compared for analyses done on 

the 100 smallest fi les and on the 100 largest fi les of the dataset, which diff ered by 

a factor 3.44 in size (bytes). Th e results from this comparison showed that there 

were neither diff erences in the pause distributions nor diff erences in the ratio of 

spontaneous and administered pauses between the two groups of data fi les. Th is 

shows that although the total number of administered pauses might increase, there 

was no fundamental diff erence in work-pause patterns for short or long working 

days, nor would pause software have diff erent eff ects.

Second, an analysis was performed to determine whether the results would 

be dependent on the NCT used. Th e analysis calculated how much time would 

be classifi ed as computer work when NCTs of 1, 10, 30 and a 100 s were used 

(Table 4.2). Th ese results were obtained for both the natural pauses as well for 

the six simulated pause regimes. As can be seen in Table 4.2, the number of work 

periods decreases 70-fold when the NCT was increased. Th e duration of the 

working periods increases more than 100 times, resulting in a two-fold increase 

in the time being classifi ed as computer work. Note also that for all NCTs the 

duration of the work period is consistently shorter than that of the pauses and 

that the variability of the pause durations is higher than the variability of each of 

the working durations.
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When the eff ects of the pause software were simulated, it was found that 

working times were similarly aff ected under the diff erent pause regimes, independ-

ent of NCT used (results not shown). Th is means that, although the amount of 

computer activity classifi ed as computer work might be higher or lower, depending 

on the specifi c NCT used, the way pause software aff ects the work-pause pattern 

is similar.

Possible health benefi ts of pause software

Variation in physical exposure is the result of the variation within and between 

all of the tasks performed in the job, including non-work activities. Th e recorded 

time traces that were used in the simulation of pause software therefore give only a 

rough approximation of the possible physical exposure during the working day. For 

example, similar computer activities can be performed using a variety of working 

postures and with diff erent amounts of task variability (variability in movement 

repetitions). Also, the amount and the variability of muscle activity associated 

with the execution of computer work can vary considerably due to the mechanical 

redundancy of the muscles, for instance, by co-contracting muscles around a joint. 

Additionally, the time traces provide no insight into the exposure during pauses of 

longer duration, when the computer user is most likely engaged in non-computer 

work. For these reasons, it is important to be cautious when drawing conclusions 

whether alterations in work-pause pattern, as imposed by pause software, can lead 

to possible health benefi ts. Nevertheless, the recording of the timing of computer 

events forms the basis for pause software to impose pause regimes, which, accord-

ing to the manufactures, has health benefi ts.

In the literature, two possible mechanisms are described that explain how 

additional rest breaks could infl uence computer user’s health (e.g. reduce fatigue, 

discomfort and other CANS; Kumar 2001). First, rest breaks might lower the 

cumulative loading during a workday, which might in turn give muscles the chance 

to recover from fatigue, promote blood circulation or promote some other form 
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of recovery (Galinsky et al. 2000, Helliwell et al. 1992). Second, rest breaks might 

introduce an increase in the variation of the physical exposure. By increasing varia-

tion, i.e. reducing stereotypy of the work, selective exhaustion of muscles, tendons 

and nerve tissue could be alleviated (Hägg 1992, Hägg 2000).

As stated in the Introduction, the benefi ts of additional rest breaks on fatigue 

and discomfort have found only marginal support in the scientifi c literature. One 

of the reasons for this modest eff ect might be that the additional breaks do not 

contribute to the decrease in cumulative loading. A review by Lötters and Burdorf 

(2002) concluded that substantial (14%) reduction in physical load is needed to 

result in a corresponding decline in CANS. In the current study, it was found that 

the additional rest breaks added only 7.2% extra ‘pause time’ to the working day. 

Th is seems to suggest that, regardless of whether a changed work-pause pattern 

might infl uence workers’ health, it is very unlikely that pause software contributes 

to reducing cumulative load.

For long-lasting work at low load levels, such as computer work, increases 

in exposure variation are thought to be better met by introducing more activity 

than by introducing more rest. Studies on active breaks, such as specifi c exercises 

or stretching, have shown, however, very disappointing results (van den Heuvel et 

al. 2003). Th e results of the current study suggest that with regard to introducing 

additional variability the eff ect of micro pauses is probably quite low consider-

ing the large number of spontaneous micro pauses taken just prior and after the 

administration of the pause (see Figure 4.5). In all the analyses the authors did 

their best to verify possible eff ects of pause software on temporal characteristics of 

computer use. Despite this, it seems very unlikely that the introduction of micro 

pauses (those below 10 s) has a possible benefi t. It therefore seems a logical step 

for computer users to switch off  this functionality in their pause software.
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Abstract

Introduction of more non-computer tasks has been suggested to increase exposure 

variation and thus reduce complaints of arm, neck and/or shoulder (CANS) in 

computer-intensive offi  ce work. Th is study investigated whether muscle activity 

did, indeed, diff er between computer and non-computer activities. Whole-day 

logs of input device use in 30 offi  ce workers were used to identify computer and 

non-computer work, using a range of classifi cation thresholds (Non-Computer 

Th resholds or NCTs). Exposure during these activities was assessed by bilateral 

electromyography recordings from the upper trapezius and lower arm. Contrasts 

in muscle activity between computer and non-computer work were distinct but 

small, even at the individualized, optimal NCT. Using an average group-based 

NCT resulted in less contrast, even in smaller subgroups defi ned by job function 

or CANS. Th us, computer activity logs should be used cautiously as proxies of 

biomechanical exposure. Conventional non-computer tasks may have a limited 

potential to increase variation in muscle activity during computer-intensive offi  ce 

work.
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Introduction

Several studies have established an association between extensive computer work 

and complaints or disorders in the arms, neck and/or shoulders (recent reviews 

include Griffi  ths et al. 2007, Village et al. 2006). Th e generic risk factor for these 

complaints has been suggested to be prolonged periods of sustained muscle activa-

tion with little variation in exposure (Mathiassen 2006, Wahlström 2005), which 

would lead to local accumulation of metabolites, and eventual damage to certain 

muscle fi bres (Visser and van Dieën 2006). 

Because of this low exposure variability during computer work, interven-

tions that manipulate the temporal exposure pattern are widely believed to be 

eff ective against complaints of arm, neck and/or shoulder (CANS) (Mathiassen 

2006, van den Heuvel et al. 2003, Wells et al. 2007). Many interventions have 

for instance focused on introducing more rest breaks in offi  ce work (e.g Balci and 

Aghazadeh 2003, Galinsky et al. 2007, Galinsky et al. 2000, McLean et al. 2001, 

van den Heuvel et al. 2003). However, three recent reviews concluded that there is 

limited evidence for a positive eff ect of more rest breaks in both primary (Brewer 

et al. 2006) and secondary prevention of CANS (Mathiassen 2006, Verhagen et 

al. 2007).

An important reason that additional breaks seem to have a limited eff ect 

among computer workers could be that the biomechanical exposure during breaks 

does not diff er to any substantial extent from exposure during computer work, at 

least not in terms of mean exposure (Arvidsson et al. 2006, Blangsted et al. 2004b, 

Fernstrom and Åborg 1999). Th us, it has been suggested that “non-computer work” 

activities in general (i.e. all work activities that do not involve computer work, 

including other desk work and breaks) do not contribute to any major extent to 

increasing exposure variation (McLean et al. 2001, Slijper et al. 2007). A few stud-

ies (Fernstrom and Åborg 1999, Mathiassen et al. 2003a, Nordander et al. 2000) 

comparing the muscle loads of several offi  ce tasks suggest that diff erences between 

computer and non-computer tasks might, indeed, be limited.



Chapter 5

92

5

 In order to compare exposure and exposure variability between computer 

work (CW) and non-computer work (NCW), an operational defi nition is needed, 

according to which the work day can be divided into separate episodes of CW and 

NCW. A classifi cation method that has gained considerable attention in recent 

years relies on software installed on a subject’s computer, which records all use of 

input devices by logging single computer events (i.e. a mouse click or a keyboard 

stroke). Th e software tracks computer use in a fast, unobtrusive and inexpensive 

manner and is suited for monitoring large groups of computer users for extended 

periods of time (Chang et al. 2007, Mikkelsen et al. 2007). 

 In order to decide whether the time between two recorded consecutive 

events should be classifi ed as a CW episode or a NCW episode, an arbitrary 

threshold (Non-Computer Th reshold, NCT) is needed. Th e NCT defi nes how far 

two computer events can be apart with the time in between still being classifi ed as 

(uninterrupted) computer work. A short NCT will only classify activities closely 

related to the actual use of input devices as “computer work”, while for a large NCT, 

“computer work” might also include other desk-related activities like paper-based 

desk work, or even short periods off  the workplace, for instance when walking to 

the copier.

 Some evidence suggests that with a NCT of about 30 s, total computer 

work duration as obtained from registration software corresponds roughly to the 

duration according to observations by an ergonomist (Blangsted et al. 2004a, 

Heinrich et al. 2004). To which extent “computer” and “non-computer” work 

diff er in biomechanical exposure is, however, unknown, while essential to the 

signifi cance of the information obtained by the registration software. 

Th us, a primary goal of the present study was to examine exposure contrasts 

between CW and NCW episodes. A particularly interesting issue concerns the 

optimal magnitude of the NCT, i.e. the NCT at which exposures during CW and 

NCW show the largest possible contrast, and the corresponding maximal ability 

of the registration software to discriminate between CW and NCW exposures. 

Since working habits diff er between subgroups of offi  ce workers, e.g. according to 
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gender, main job function or CANS status (Hipple and Kosanovich 2003, Richter 

et al. 2008), the size of exposures, contrasts and optimal NCTs might even diff er 

between groups. So far, studies using only software registrations have assigned a 

“standard” optimal NCT to all participants, since personal optimal NCTs based on 

biomechanical exposure recordings have not usually been available (e.g. Blangsted 

et al. 2004a, Chang et al. 2007, Mikkelsen et al. 2007). Th is could imply that the 

exposure contrast is less than optimal for each particular individual, but the size 

of this possible eff ect is not known at present. 

 In the present study, computer events were recorded using registration 

software during a regular working day from participants that performed their nor-

mal offi  ce work at their own computer, and these registrations were synchronized 

with continuous electromyography (EMG) measurements of arm and shoulder 

muscle activity. EMG has been used as a measure of biomechanical exposure in 

numerous studies of computer work in laboratory settings (e.g. Crenshaw et al. 

2006, Huysmans et al. 2008, Szeto et al. 2005) as well as in the fi eld (Arvidsson 

et al. 2006, Larsman et al. 2009, Mork and Westgaard 2007), based on the notion 

that the magnitude and variation of arm and shoulder muscle activity are impor-

tant determinants of the risk of developing CANS. By systematically varying the 

NCT in the obtained dataset we were able to address the following questions:

1a. How does the mean and variability of muscle activity during CW and NCW 

change with NCT?

1b. Which NCT (NCTopt) leads to the highest contrast ( Cmax) in muscle activity 

between CW and NCW episodes and what is the size of this contrast?

2. Does the mean and variability of muscle activity and the values of NCTopt 

and Cmax diff er between subgroups of offi  ce workers?

3a. What is lost in exposure contrast between CW and NCW when applying 

an averaged, group-based NCTopt to individuals, rather than their personal 

NCTopt?

3b. Can the discriminative ability of a group-based NCTopt be improved by using 

values specifi c to each subgroup?
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Methods  

Subject population

At the Erasmus MC in Rotterdam, the Netherlands, about 5000 employees are 

engaged in offi  ce work tasks on a regular basis, using computers to diff erent 

extents. Out of these, 571 participants volunteered to participate in the present 

research, all of which reported to spend more than 50 percent of their work time 

at computer-related activities (for more details, see Richter et al. 2008, Slijper et 

al. 2007). Among these extensive computer users, 70 participants were identifi ed 

who reported in a self-administered questionnaire to have had moderate to severe 

non-specifi c complaints of arm, neck and/or shoulder (CANS) for several months 

prior to the study. From this CANS population, 15 participants were randomly 

selected into the present study. For each of the 15 CANS participants, a matched 

(gender, job function, age and working hours) control subject who had no history 

of CANS in the past year was selected from the population of extensive computer 

users. Matching was successful, since no signifi cant diff erences were found on the 

matching criteria between the CANS group and the control group. 

On the basis of previous experience of the size of within- and between-

subject variability in EMG from the upper trapezius and the lower arm (Jackson 

et al. 2009, Mathiassen et al. 2002, Mathiassen et al. 2003a, Mathiassen et al. 

2003b, Nordander et al. 2004), a total sample size of 30 participants, with 15 in 

either group with and without CANS, was considered to provide a suffi  ciently 

sensitive basis for detecting biologically signifi cant diff erences in EMG levels 

and variabilities between these groups, and between CW and NCW within par-

ticipants. Also, a sample this size would off er ample information to give credible 

estimates of the sizes of optimal discrimination thresholds and their associated 

exposure contrasts. Th e total group consisted of 24 females and 6 males. 14 had 

secretarial jobs, 9 were researchers, 5 had managerial jobs and 2 were IT-specialist 
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(for more details on classifi cation of main job function, see Richter et al. 2008). 

Twelve worked part-time (20–35 hours/week), 11 worked full-time (35–40 h/w) 

and 7 worked more than full-time. Twenty-nine participants were right-handed, 

although two of them, both in the CANS group, used the mouse with the left 

hand. One subject without CANS was left-handed, but used the mouse with the 

right hand. Th e mouse-handling side was defi ned as the dominant (D) body side, 

and the other side was defi ned as non-dominant (ND). In order to screen for 11 

forms of specifi c CANS as defi ned in the SALTSA report by Sluiter et al. (2000), 

the participants in the CANS group completed an extensive, standardized physical 

examination by a rehabilitation doctor. All CANS participants were classifi ed by 

this examination as having non-specifi c CANS in the upper extremity. 

Protocol

Participants were monitored during a normal working day at their own workplace 

for approximately 6 hours without being interrupted or controlled by the research-

ers. For these participants, a normal working day included working with an offi  ce 

suite (e.g. Microsoft Offi  ce), e-mail and internet, having about 30 minutes of 

lunch break in an in-house restaurant and two coff ee breaks of approximately 15 

minutes each during the day. None of the participants left the offi  ce building dur-

ing the measurement. Together with the participants, a working day was selected 

where computer work was expected to comprise at least 50% of the work time. 

Th roughout the day, participants wore a hip bag containing the measurement 

device (see below), which allowed participants to move freely. Participants signed 

an informed consent but were not further informed about the exact variables 

being assessed during the day. 
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Measurements

Electromyography (EMG)
Electromyography (EMG) signals were collected from six muscles using bipolar 

surface electrodes (30 mm diameter, Nutrode Mini-P10m0 pre-gelled EMG-

electrodes, Technomed Europe). Bilateral recordings were made from the extensor 

carpi radialis (ECR) and the fl exor carpi radialis (FCR) muscles in the lower arm, 

and from the trapezius pars descendens (Trap) muscle. We chose these muscles 

because they are common sites for computer-related complaints (Goudy and 

McLean 2006, Juul-Kristensen et al. 2004, Laursen and Jensen 2000, Laursen et 

al. 2001). Th e skin was cleaned with alcohol prior to applying the electrodes. Th e 

electrode pair was placed according to SENIAM recommendations (Hermens et 

al. 1999) on the centre of the muscle belly, parallel to the muscle fi ber direction. 

Signals were collected at 1024 Hz to a portable logger (Porti-17TM, TMS, 

Enschede, Th e Netherlands, CMRR >90 dB), offl  ine high-pass fi ltered at 5 Hz, 

rectifi ed and low-pass fi ltered using a gauss fi lter with a cut-off  of 32 Hz. Data 

were further downsampled to 8 Hz using a moving average fi lter (Nordander et 

al. 2004). Th e rectifi ed and fi ltered signals obtained during work were normal-

ized by the signal obtained during a voluntary reference contraction before the 

onset of the workplace measurement. Normalization was performed to control for 

within- and between-subject variability due to e.g. skin impedance, exact electrode 

placement and muscle fi bre composition (Mathiassen et al. 1995). Th e reference 

contraction consisted in sitting with straight arms in 90° abduction with the palm 

of the hand facing forward, while holding a vertically oriented load of 2 kg for 5 

to 10 seconds (Hansson et al. 2000). Th e reference EMG (%RVE) was obtained 

for each muscle separately as the highest average EMG value in a 2 second moving 

window during the reference contraction. Th e RVE test was organized by the same 

researcher (JR) for all participants, and she was also responsible for the placement 

of EMG electrodes. 
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Software registrations
Custom built registration software was installed on each subject’s computer months 

prior to the EMG measurement day for other purposes (see Richter et al. 2008, 

Slijper et al. 2007). Th e software checked the position of the cursor (screen x and 

y coordinates in pixels) at a frequency of 10 Hz, and noted whenever this posi-

tion had changed. Also, the software recorded key presses on the keyboard, mouse 

clicks and mouse wheel use (temporal resolution 10 Hz). All of these actions were 

defi ned as computer events. Th e software logged the data without notifying the 

computer user in order not to interfere with his regular work. Data were collected 

on a central server, downloaded by the researchers and processed offl  ine. 

Signal synchronization
In order to align the EMG signal with the computer registration fi le we performed 

a synchronization procedure. A button attached to the EMG recorder produced a 

sharp pulse when pressed. At the beginning of the working day, the experimenter 

repeatedly tapped a key of the keyboard using that button, thus stamping a simul-

taneous signal in both the registration software and the EMG fi le. Th ese event 

marks were used to align the signals from the EMG recorder and the registration 

software.

Analyses 

From the normalized and synchronized fi les, we excluded the fi rst 10 minutes 

containing synchronization and the briefi ng of the subject, and the last 10 minutes 

with preparations for dismantling. Analyses of the remaining data were performed 

using MATLAB (version 7.0, Th e MathWorks, Inc.).

Defi nition of computer and non-computer work    
In order to discriminate periods of computer work from non-computer work, a 

Non-Computer Th reshold (NCT) was introduced, which specifi ed the maximal 



Chapter 5

98

5

period of time that two subsequent computer events were allowed to be separated 

for the time in between them to still be regarded as computer work (see also 

Richter et al. 2008, Slijper et al. 2007). Each uninterrupted period of computer 

work according to a particular NCT was classifi ed as an episode of computer work 

(CW), while periods where the time span between events exceeded the NCT were 

classifi ed as episodes of non-computer work (NCW). Th resholds (NCTs) of 2, 5, 

7, 10, 20, 30, 40, 60, 120, 240, 480 and 960 seconds were applied to investigate 

the consequences of NCT defi nition. Th is procedure is illustrated in Figure 5.1a, 

showing that with increasing NCT, the time classifi ed as CW increases, while the 

number of CW episodes decreases.

Because the software registration fi le had a diff erent sample frequency (10 

Hz) than the fi ltered EMG fi le (8 Hz), we selected the nearest points in the EMG 

recording fi le to each onset and off set of computer episodes in the registration fi le.

Exposure parameters

Mean exposure
Mean levels of EMG were assessed on the basis of the adjusted EMG signal. First, 

the overall mean EMG level for each subject was determined by averaging the 

whole EMG signal throughout the working day. Second, by applying each of 

the twelve NCTs to the EMG signal and concatenating the resulting EMG of all 

episodes classifi ed as CW and NCW, twelve NCT-specifi c datasets were obtained 

on CW and NCW exposure for each subject. Th e mean EMG level during CW 

and NCW was calculated for each of these datasets. Th e median value across all 

participants was used as a measure of central tendency across the group. Variabil-

ity between participants was expressed by the interquartile range (IQR) across 

participants, i.e. the range between the 25th and 75th percentile of the population 

distribution.  
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Exposure variability 
In order to assess the variability of EMG within day and subject, the overall EMG 

signal as well as the concatenated EMG signals for CW and NCW were binned in 

consecutive periods of 1 minute (Arvidsson et al. 2006, Mathiassen et al. 2003a, 

Nordander et al. 2000). Th e mean level of EMG was determined for each of these 

bins, and the standard deviation of these mean values across the bins was calculated 

across the entire signal and for CW and NCW separately, termed sCW and sNCW, 

respectively. Additionally, coeffi  cients of variation (CV, i.e. sCW/mean and sNCW/

mean, respectively) were calculated for the CW and NCW EMG as relative meas-

ures of variability. Th ese calculations were performed for each muscle separately.

Figure 5.1 (a) Timeline of single, discrete computer events (top line), and the resulting episodes 
of computer work (CW) and non-computer work (NCW) using non-computer work thresholds 
(NCT) of 10 s and 30 s.  Figure 5.1(b) Example of the infl uence of NCT on the contrast between CW 
and NCW. The optimal NCT (Individual NCTopt , 20 s in this example) is illustrated together with 
the corresponding maximal individual-specifi c contrast, Cmax, as well at the contrast Cg resulting
from using a group-based NCTopt of 40 s. ΔC is the loss of contrast. 
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Exposure contrast
Th e contrast in exposure between CW and NCW was assessed for each NCT value, 

muscle and subject according to the equation: 

Equation 5.1

Ct = 
MSEt—————

(MSEt + st
2
 )

In Equation 5.1, MSEt expresses the diff erence between mean exposures 

during CW and NCW for a particular NCT (as defi ned by its threshold value t) 

in terms of a Mean Squared Error, and st
2   is the average variance within CW and 

NCW at that NCT, i.e. (sCW
2+sNCW

2)/2. Th us, on a scale between 0 and 1, Ct takes 

into consideration both the diff erence in mean exposure between CW and NCW 

and the exposure variability within either category. Equation 5.1 is an individual-

based modifi cation of the contrast formula given by Mathiassen et al. (2005) for 

assessing diversity between tasks at the level of groups. 

For every subject and muscle, that NCT (NCTopt) was identifi ed at which 

the contrast was largest (C  max), cf. Figure 5.1b. For each muscle, the median of the 

subject-specifi c (n=30) values of Cmax and NCTopt were determined to express the 

central tendency of the group. Th e IQR was used as measure of dispersion in the 

group. Medians of Cmax and NCTopt were also obtained for subgroups stratifi ed 

according to CANS (15 participants with CANS vs. 15 without CANS) and main 

job function (14 participants with secretarial jobs, nine researchers and fi ve with 

managerial jobs). Only two participants in our dataset were IT-professionals, and 

were therefore excluded from the job function analysis. Considering that only six 

participants were males, stratifi cation by gender was not warranted. 
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Loss of contrast when using a group-based NCTopt

Th e magnitude of loss of exposure contrast between CW and NCW when using 

the group-based NCTopt rather than the personal NCTopt was assessed for each 

individual by subtracting the contrast Cg obtained when applying the group-

based NCTopt to that individual from the individual’s personal Cmax (see Figure 

5.1b) and express the diff erence, i.e. C = Cmax - Cg, in percent of Cmax. Similarly, 

loss of contrast within subgroups was assessed by the diff erence, ΔCs, between 

the contrast, Cs, obtained by using a subgroup-based NCTopt, and the optimal, 

individual-based Cmax.

Statistics

Visual inspection of the outcome parameters showed that some of the data were 

non-normally distributed (not shown). Formal tests (Kolmogorow-Smirnov, 

p<0.05) indicated that statistically signifi cant non-normality was present in 7% 

of the investigated distributions. We therefore performed non-parametrical tests on 

all data. Suspected non-normality was also a reason for choosing medians instead 

of means as measures of central tendencies in groups.

Diff erences in mean EMG, sCW, sNCW and coeffi  cient of variation (CV) 

between CW and NCW were addressed for every NCT using the Wilcoxon 

matched-pairs test. Diff erences in NCTopt, Cmax, Cg, C and Cs between muscles 

were tested using the Friedman test for multiple dependent samples and, when 

signifi cant (p<0.05), post-hoc tests were performed using the Wilcoxon signed-

rank test, with an adjusted signifi cance threshold of 0.01 to compensate the eff ect 

of repeated multiple testing. Diff erences in mean EMG, CV, NCTopt and Cmax 

between subgroups of participants were tested using the Mann-Whitney U test for 

two independent samples (CANS) and the Kruskal-Wallis test for multiple inde-

pendent samples (job function). Diff erences between C and Cs in subgroups 

were tested with the Wilcoxon matched-pairs test.
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Results

Characteristics of computer and non-computer work 
episodes

Participants were on average monitored for 21281 s (5:55 hours:minutes) with 

a range of 4:10 – 6:40 hours. Th e number of CW episodes decreased from 648 

(SD between participants 263) to 3 (SD 1) when NCT changed from 2 s to 960 

s (Figure 5.2). A linear fi t of the number of episodes by the log-transformed NCT 

revealed that doubling the NCT resulted in an approximate decrease of 40% in 

the number of episodes. 

Figure 5.2: Relationship between the log10-transformation of the Non-Computer Threshold (NCT) 
and the number of computer work (CW) episodes (dashed line with dots), the mean duration of 
CW episodes (dashed line with triangles), and the mean duration of NCW episodes (line with open 
dots). Error bars illustrate one standard deviation between participants.
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With a NCT of 2 s, the average duration of CW episodes was 9.3 s (SD 

3.8 s) (Figure 5.2). Th is duration increased to 5337 s (SD 2493 s), i.e. about 89 

minutes, at a NCT of 960 s. A linear regression fi t revealed an increase in CW 

duration by 90% when doubling the NCT. For NCW episodes, the averaged 

duration increased from 29.7 s (SD 15.6 s) to 1591 s (SD 597 s) across the range 

of investigated NCTs (Figure 5.2), corresponding to an approximate 50% increase 

when doubling the NCT. For a NCT of 30 seconds the mean number of episodes 

was 57 and the mean duration of these episodes was 165 s (SD 67 s) for CW and 

236 s (SD 96 s) for NCW. Th is summed up to an average of 2:36 hours of com-

puter work per subject, corresponding to 44% of the total measurement period.

For subgroups of participants with and without complaints of arm, neck 

and/or shoulder (CANS) and participants with diff erent job functions, no sig-

nifi cant diff erences were found in the mean number of episodes and in the mean 

duration of CW and NCW episodes (data not shown, p>0.3).

EMG levels during computer and non-computer 
work

Th e overall mean EMG levels in ECR were 3.8% RVE (group median ND (non-

dominant side)) and 4.8% RVE (D (dominant side)); Figure 5.3, dotted lines), 

in the FCR, these values were 17.8% RVE and 18.1% RVE, and the mean EMG 

levels in Trap on non-dominant and dominant side were 25.9% RVE and 26.3% 

RVE, respectively.

Th e mean EMG levels during CW and NCW were signifi cantly diff erent 

for NCTs up to 240–960 seconds, dependent on the muscles (a Chi-square of, on 

average, 18: average p-value 0.004, Figure 5.3, arrows). In all muscles, the largest 

diff erence in EMG between CW and NCW was found at rather short NCTs (2 

to approximately 30 s). For these NCTs, the CW EMG level was on average 45%, 

70% and 65% (ND) and 57%, 75% and 56% (D) of the level during NCW (order 

of muscles from left to right as in Figure 5.3)
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EMG levels during CW and NCW changed with increasing NCT in a 

similar fashion across muscles and body sides (Figure 5.3). For NCW, mean EMG 

increased for low NCTs, followed by a decrease for higher NCTs. Mean EMG level 

during CW decreased in half of the muscles for low NCTs, and increased in all 

muscles for higher NCTs. Furthermore, with increasing NCT, mean EMG levels 

of CW and NCW converged towards the overall mean EMG level (horizontal 

dotted lines in Figure 5.3).
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Figure 5.3: Mean EMG during computer work (CW, dots) and non-computer work (NCW, triangles) 
in relation to the NCT. Median values across participants are shown separately for each muscle 
(ECR, extensor carpi radialis; FCR, fl exor carpi radialis; Trap, trapezius; ND, non-dominant side; D,
dominant side). Error bars show IQR across participants. Overall mean exposure of the group is 
indicated by the horizontal dashed line. EMG during CW diff ered signifi cantly from that during 
NCW at NCT values to the left of the arrows. X and y labels in all plots are similar to the two left-
most plots.



Diff erences in muscle load between computer and non-computer work among offi  ce workers

105

5

EMG variability during computer and non-computer 
work

Th e overall standard deviations between 1-minute bins of mean EMG in the 

ECR were 3.0% RVE (group median for ND) and 3.8% RVE (D); Figure 5.4, 

horizontal lines). For the FCR, corresponding values were 9.3% RVE and 8.7% 

RVE, and the EMG variability in Trap on non-dominant and dominant side was 

19.8% RVE and 19.5% RVE, respectively.

Th e EMG variability in CW, i.e. the sCW, was signifi cantly smaller (average 

z=-4.41, p=0.003) than that during NCW, i.e. sNCW, for all muscles and NCTs, 

except for an NCT of 960 s in ECR ND and ECR D. For these discriminating 

NCTs, the sCW was on average 50%, 62%, 44% (ND) and 51%, 63% and 47% 

(D) of the sNCW (full lines in Figure 5.4). Th e coeffi  cient of variation (CV) changed 
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Figure 5.4: Standard deviation (full lines, left y-axis) and CV value (dashed lines, right dashed 
y-axis) of EMG amplitudes across one-minute bins of CW (dots) and NCW (triangles) for all NCTs;
median values across participants. The standard deviation and CV of the entire EMG recording 
are indicated by the full-drawn and dashed horizontal lines, respectively. Muscle abbreviations, 
see Figure 5.3.
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across NCTs in a similar fashion as the standard deviation (dotted lines in Figure 

5.4) and was signifi cantly smaller during CW than during NCW for all NCTs in 

some muscles (Trap ND and D, FCR D, average Wilcoxon, z= -4.41,  -3.88 and 

-3.24, p<0.001, p=0.002 and p=0.004) and for some NCTs in the others (2–30 s in 

ECR ND,  2–20 s in FCR ND and 2–240 s in ECR D: average Wilcoxon, z over 

signifi cant NCTs equal to -3.68, -2.77 and -4.17, p=0.007, p=0.01 and p<0.001). 

Exposure contrast between computer and non-com-
puter work

Th e value of NCTopt, i.e. the NCT-value resulting in the largest contrast, Cmax, 

between CW and NCW for a particular individual, diff ered considerably among 

participants (open circles in Figure 5.5). Group-based NCTopt values between 7 

and 20 s were found (vertical lines in Figure 5.5;  Table 5.1), and they were sig-

nifi cantly related to muscle (Chi-square=22, p<0.001). Post-hoc tests showed that 

ECR ND had a lower NCTopt than all other muscles except FCR ND (average 

z=3.06, p=0.003: Table 5.1)  . 

Th e corresponding median values of Cmax ranged between 0.13 and 0.21 

among the muscles (Figure 5.5, horizontal lines and Table 5.1), and this diff er-

ence was signifi cant (Chi-square=16.5, p=0.006). Cmax for the dominant ECR 

muscles was signifi cantly lower than ECR ND, FCR ND and FCR D (z=3.02, 

p= 0.003, Table 5.1).

Exposure characteristics in subgroups  

Th e mean EMG level in participants with CANS was about 25% larger in the FCR 

muscle on the dominant side during both CW and NCW than in participants 

without CANS (z for CW and NCW between -2.71 and -2.00, depending on 

NCT, p between 0.007 and 0.045). None of the other muscles exhibited signifi cant 

diff erences between participants with and without CANS. 
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EMG variability in CW was similar for groups with and without CANS 

except in Trap D for most of the NCTs, for which participants with CANS had 

lower CV values for all NCTs between 2 and 240 s (average z=-2.47, p=0.02). 

Variability in NCW was only signifi cantly diff erent between participants with 

and without CANS for FCR D, where participants with CANS had lower CV 

values for NCTs between 2 and 120 s (average z=-2.19, p=0.03). Similarly, NCTopt 

values were not statistically diff erent for participants with and without CANS 

(Table 1). For some muscles, this lack of signifi cance was probably due to large 

dispersions between participants, and hence a limited power of the study to detect 

even considerable diff erences. For Trap on the non-dominant side, the CANS 

group showed higher contrast values (Cmax) than the group without CANS (z=-

2.1, p=0.036, Table 5.1). 
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Figure 5.5: Individual lines (n=30) of the contrast in mean EMG between CW and NCW obtained 
at the investigated NCTs. Open circles mark the maximal contrast, Cmax, for every subject. The 
horizontal line shows the median Cmax across participants. The vertical line indicates the median 
NCTopt across participants.



Chapter 5

108

5

Job function signifi cantly infl uenced the mean EMG in ECR ND during 

CW and NCW except at an NCT of 2 s during CW (mean Chi-square=8.98, 

p=0.016). Also, mean EMG in ECR D diff ered according to job function, but 

only for CW and not for all NCTs (mean Chi-square=6.62, p=0.037 for NCTs 

from 10 to 480 s). In the above cases, researchers had lower mean EMG values than 

secretaries and managers. EMG variability (CV) during CW did not diff er between 

job functions. In contrast, job function had a substantial infl uence on EMG vari-

ability during NCW. In all muscles except FCR and Trap on the dominant side, 

signifi cant diff erences were found for almost all NCTs (Chi-square=10.74, 8.70, 

10.28 and 8.67; p=0.006, 0.015, 0.007 and 0.015 for ECR ND, FCR ND, Trap 

ND and ECR D, respectively). For ECR ND, FCR ND and ECR D, researchers 

had higher CV values than secretaries and managers, and for Trap ND, secretar-

ies had lower CV values than researchers and managers. NCTopt values did not 

diff er signifi cantly between job functions, and Cmax values were also similar except 

for FCR ND, where secretaries had a higher Cmax than researchers and managers 

(Chi-square=7.5, p=0.024).

Loss of contrast when using a group-based NCTopt

As expected, applying the group-based median NCTopt instead of the subject-

specifi c NCTopt led to a loss of contrast between CW and NCW for most indi-

viduals. Th e contrasts, Cg, obtained when using group medians of NCTopt, ranged 

between 0.09 and 0.19 among the muscles (Table 5.1), which was between 0.005 

and 0.07 lower than the individual-specifi   c Cmax (Table 5.1). Th is loss of contrast, 

Table 5.1: Group median values with between-subject IQR (interquartile range) in brackets for 
the optimal NCT (NCTopt), the corresponding maximal contrast Cmax, the contrast Cg obtained when 
using the overall group-based NCTopt on each subject, and the loss of contrast when using either 
the group-based or subgroup-based NCTopt instead of individual-specifi c values of NCTopt (ΔC and 
ΔCs, respectively). For each muscle (columns), data are shown for the whole population as well as 
for subgroups with and without complaints of arm, neck and/or shoulder (CANS) and subgroups 
with diff erent main job functions.
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Subgroups ECR ND FCR ND Trap ND ECR D FCR D Trap D

NCT
opt

 
(s)

all subjects 7 (5)b 7 (55) 20 (33) 10 (55) 10 (115) 10 (53)

MSC 7 (13) 7 (33) 10 (25) 20 (365) 30 (415) 10 (31)

no MSC 7 (5) 7 (190) 30 (47) 10 (55) 10 (45) 10 (53)

Secretaries 7 (2) 7 (3) 10 (23) 10 (473) 10 (113) 10 (3)

Researchers 20 (18) 40 (411) 30 (39) 30 (159) 30 (291) 60 (411)

Managers 7 (33) 7 (415) 10 (28) 5 (4) 5 (6) 10 (31)

C
max

all subjects 0.19 
(0.10)

0.21 
(0.22)

0.17 
(0.16)

0.14 
(0.13)b

0.13 
(0.13)

0.17 
(0.18)

MSC 0.22 
(0.09)

0.24 
(0.15)

0.20 
(0.05)a

0.09 
(0.16)

0.09 
(0.13)

0.24 
(0.15)

no MSC 0.18 
(0.09)

0.16 
(0.30)

0.06 
(0.14)

0.14 
(0.09)

0.16 
(0.13)

0.11 
(0.18)

Secretaries 0.23 
(0.08)

0.29 
(0.14)a

0.17 
(0.19)

0.13 
(0.17)

0.15 
(0.15)

0.26 
(0.18)

Researchers 0.19 
(0.06)

0.08 
(0.18)

0.14 
(0.18)

0.16 
(0.11)

0.10 
(0.13)

0.10 
(0.17)

Managers 0.25 
(0.18)

0.13 
(0.06)

0.17 
(0.16)

0.15 
(0.20)

0.18 
(0.25)

0.17 
(0.15)

C
g

all subjects 0.19 
(0.09)

0.19 
(0.27)

0.10 
(0.17)

0.12 
(0.15)

0.09 
(0.16)

0.16 
(0.21)

ΔC (%) all subjects 4.7 (9.9) 2.9 (30.4) 7.8 (34.9) 9.7 (30.8) 13.2 
(41.8)b

3.8 (29.0)

ΔC
s
 (%) MSC 3.3 (6.0) 2.7 (28.7) 11.5 

(53.9)
15.1 
(53.3)

22.1 
(55.7)

2.3 (21.4)

no MSC 6.2 (12.1) 4.7 (32.0) 11.6 
(44.0)

5.2 (22.6) 5.4 (35.2) 6.4 (42.1)

Secretaries 0.8 (5.1) 2.1 (2.9)a 5.2 (8.4) 10.3 
(79.7)

12.5 
(58.0)

0.2 (3.2)

Researchers 4.7 (33.3) 31.0 
(65.5)

4.9 (26.6) 9.2 (31.9) 14.8 
(56.7)

30.1 
(52.6)a 

Managers 5.3 (34.2) 6.4 (57.4) 16.6 
(67.4)

1.8 (8.6) 3.2 (4.8) 4.3 (25.2)

a p<0.05 for the diff erence between subgroups
b p<0.01 for the diff erence between muscles
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C, corresponded to, on average, 7.0% of Cmax (4.7%, 2.9%, 7.8%, 9.7%, 13.2% 

and 3.8% for the separate muscles, order as in Table 5.1). While this loss of con-

trast was signifi cant when tested across all muscles together (Chi-square=13.6, 

p=0.019), post-hoc testing did not reveal any signifi cant diff erences between indi-

vidual muscles except for the diff erence between FCR D and ECR ND, which 

was only borderline signifi cant (p=0.011) when using the stricter signifi cance limit 

for post-hoc testing.

When using subgroup-specifi c values of NCTopt, loss of contrast was similar 

among participants with and without complaints of arm, neck and/or shoulder 

(p at least 0.08 across muscles, Table 5.1). Likewise, Cs was similar across job 

functions for most muscles except for FCR on the non-dominant side and Trap 

on the dominant side. For FCR ND, secretaries had a lower Cs than researchers 

and managers, and for Trap D, researchers had a higher Cs than secretaries and 

managers (Table 5.1; Chi-square=6.6 and 7.9, p=0.038 and 0.02, respectively). 

Finally, using a subgroup- instead of a group-based NCTopt did not result in any 

signifi cant improvement of the loss of contrast (not shown).
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Discussion

In the present study we used a temporal discrimination threshold (Non-Computer 

Th reshold or NCT) to divide a time line of computer input events into CW 

(computer work) and NCW (non-computer work) episodes. Th e diff erences in 

biomechanical exposure, as assessed through EMG, between CW and NCW were 

investigated. We decided to use EMG as our target measure of exposure because 

it has been widely used in studies of computer work (e.g. Huysmans et al. 2008, 

Larsman et al. 2009, Mork and Westgaard 2007) to refl ect what is believed to 

be important determinants of risk for contracting CANS, i.e. the level and time 

pattern of muscle activity in the upper extremity (Griffi  ths et al. 2007, Village et 

al. 2006). 

In the Introduction we asked three questions regarding the relationship 

between EMG activity during CW and NCW episodes and the NCT used to 

identify these episodes. Answers to these questions are necessary to appreciate 

the ability of registration software to help in estimating muscle activity patterns 

in individual offi  ce workers, and to address whether non-computer activities are 

likely to off er a source of increased variation in computer-intensive work. Similar 

studies are needed of other important exposure measures, such as upper arm pos-

tures or movement velocities of the hand, to determine the discriminative ability 

of computer activity logs and the opportunities for increasing variation in these 

cases. Since our study population was deliberately selected to represent extensive 

computer users in an academic setting, results related to the time line of CW and 

NCW episodes and the muscle activity patterns at the overall job level may not 

be directly applicable to academic staff  in general, let alone computer users in 

other occupations. Results concerning exposure within CW and NCW, however, 

including contrasts between CW and NCW and the ability of registration software 

to identify these contrasts, may be more consistent between jobs with diff erent 

proportions of computer work.
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Eff ects of the NCT on occurrence and muscle activity 
of CW and NCW (cf. question 1a)

Duration and number of CW and NCW episodes
Th e duration and number of CW and NCW episodes changed markedly and 

regularly with increasing NCT in a log-linear fashion. As a rule of thumb we found 

that when the NCT was doubled, CW and NCW episode durations increased 

by 90% and 50%, respectively, while the number of episodes decreased by 40%. 

Th ese results add to previous fi ndings of ours suggesting a log-linear relationship 

between the total duration of what is classifi ed as computer work and the chosen 

NCT (Richter et al. 2008).

Mean EMG during CW and NCW
We found that the mean EMG during CW episodes increased with NCT, preceded 

by an initial decrease for some muscles (Figure 5.3). Mean EMG during NCW 

also increased with the NCT, up to values of NCT between 30 and 240 s, after 

which NCW EMG decreased again (Figure 5.3). Th e counter-intuitive increase 

in both CW and NCW EMG activity for NCTs between about 5 and 30 s can 

be explained if one assumes that NCW is associated with EMG levels that are 

generally higher than those seen during CW. If the lower part of the NCW EMG 

is then re-classifi ed to be CW when the NCT changes, that change will lead to 

an increase in average EMG during both CW and NCW. Th e convergence of the 

EMG activity during CW and NCW at high NCT values is reasonable, because 

at these time scales more and more ‘other’ desk-related activities get classifi ed as 

computer work, and computer and non-computer work exposures will tend to 

get more similar. 

Independent of the discrimination threshold, the mean levels of EMG in the 

ECR, FCR and Trap muscles were signifi cantly higher during NCW than during 

CW on both body sides (Figure 5.3). Higher EMG in NCW as compared to CW 

has also been reported in other studies. For instance, Fernström and Åborg (1999) 
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found higher trapezius activity during general desk work (9.0% MVC) than during 

data entry work (6.0%), and Arvidsson et al. (2006) found higher muscular activi-

ties in trapezius and lower arm extensors during breaks than during computer-

based work in air traffi  c controllers. Other studies have, however, reported a lack 

of diff erence or even a higher EMG activity during computer work. For instance, 

Nordander et al. (2000) found no diff erences in muscular “rest” between keyboard 

work (11% of time) and general desk work (12% of time) among offi  ce workers, 

while in a laboratory experiment, Blangsted et al. (2004b) found that a typing 

task was associated with larger EMG levels than controlled rest breaks between 

work bouts. Th e confl icting results of the above studies might be explained by 

large diff erences in study design. In the experiment reported by Blangsted et al. 

(2004b),  participants were required to perform a controlled computer task, with 

non-computer work consisting only of rest breaks, while several other studies have 

allowed participants to perform their daily computer work including a whole 

range of desk-related activities (Arvidsson et al. 2006, Fernstrom and Åborg 1999, 

Nordander et al. 2000), which might or might not be directly related to active 

computer usage. In an experimental setting, the external exposure during both 

breaks (e.g. controlled rest in a seated position) as well as computer work (e.g. 

typing a particular text piece) is deliberately controlled, which probably results 

in a higher exposure during computer work than during non-computer work. 

Further studies will be needed to gain a better understanding of the contents and 

exposure time-line of computer-related tasks and other tasks performed by offi  ce 

workers, and how the exposure pattern may infl uence relevant outcomes such as 

fatigue and performance.

EMG variability in CW and NCW
Similar to the mean EMG levels, EMG variability was higher in NCW than 

in CW for all muscles and most NCTs (Figure 5.4). At small NCT values (2 

and 5 s), variability during CW was on average 64% of the value during NCW 

when expressed in terms of the coeffi  cient of variation. Th ese results confi rm 
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the impression that at small NCT values, when computer use is closely related 

to input device use, computer work is characterized by low muscle activity with 

little variability. While sometimes diffi  cult to compare because of various defi ni-

tions and assessment methods, the magnitude of EMG variability (CV) in the 

current study (range 0.32–0.85) seemed somewhat higher than that reported in 

previous studies of EMG in assembly work (Jackson et al. 2009, Mathiassen et al. 

2003b, Möller et al. 2004) and during surgery (Luttmann et al. 1996), in which 

CV ranged between 0.04 for trapezius and 0.20 for lower arm extensors. Th is dif-

ference is probably caused partly by the explicit and isolated tasks studied in the 

above mentioned papers, leading to less variability between episodes than in the 

present case of more mixed work, and partly by the fact that some of these stud-

ies report variability between “bins” (or work cycles) which are longer than the 1 

min. applied by us, and hence prone to be more stable (Mathiassen et al. 2003b). 

In general, descriptive measures of exposure variability within participants have 

been explored only little as candidates for important ergonomics information 

(Mathiassen 2006, Mathiassen et al. 2003b). 

Eff ects of the NCT on exposure contrasts between 
CW and NCW (cf. question 1b)

Th e maximal contrast Cmax between CW and NCW EMG was reached at a NCT 

between 7 s and 20 s, depending on the muscle (Figure 5, vertical lines, and Table 

5.1). At this NCT value, NCTopt, the registration software discriminated best 

between CW and NCW exposures. 

At the NCTopt specifi c to each muscle and individual, Cmax values of 0.13–

0.21 were reached (Table 5.1), with a considerable dispersion between participants. 

Given that the diff erences in mean EMG level between computer work and non-

computer work were distinct (Figure 5.3) and signifi cant for most muscles, it 

follows from Equation 5.1 that the dominant cause of these low Cmax values was 
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substantial within-subject variability in CW and NCW EMG. As illustrated in 

Figure 5.4, NCW EMG exhibited a particularly large variability. 

Reference data for comparison with the contrast values observed in our study 

are scarce in the literature. Th is is due to a general paucity of data on within-subject 

variability in muscle activity – some studies are cited above – and a specifi c lack of 

studies reporting such data from two or more tasks. However, in a study of trape-

zius EMG in several offi  ce tasks, Mathiassen et al. (2003a) reported the mean and 

within-subject variability, using 1-minute bins, of two trapezius EMG parameters 

describing the occurrence of muscle “rest” and the frequency of changes in EMG. 

Entering these data in equation 1 yield contrasts between computer work and other 

offi  ce tasks, which are, in general, less than 0.05 and thus considerably smaller than 

those obtained in the present study. Th e same paper also reports data from cleaning 

tasks, and the EMG contrast between computer work and cleaning rises to about 

0.50 for the frequency parameter, but only to 0.10 for muscle “rest”. Th e study by 

Möller et al. (2004) compared bilateral trapezius and lower arm EMG from three 

assembly tasks with a cycle time between 3 and 4 minutes. Within-subject vari-

ability was expressed by the cycle-to-cycle variance. For the right trapezius EMG 

level, contrasts between the tasks ranged from 0.10 to 0.29, while contrasts up to 

0.56 were observed for the left trapezius. In a study of repeated 4 s cycles of nut 

running using a pneumatic torque wrench, Mathiassen et al. (2003b) reported 

data on median EMG from the trapezius muscle and the lower arm during work 

in three diff erent body postures. Th e maximal EMG contrasts between working 

postures were 0.72 and 0.81 for the right and left trapezius, respectively, while 

lower arm EMG contrasts never exceeded 0.16. With proper caution due to dif-

ferent task defi nitions, EMG variables and measures of within-subject variability, 

the contrasts observed by us do not seem to be exceptionally small as compared 

to previous reports from offi  ce work, but probably smaller than contrasts between 

tasks that diff er substantially in working postures and external loads. Th is suggests 

that ordinary non-computer tasks may have some potential to increase overall vari-
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ation in computer-intensive offi  ce work, but that more vigorous physical activity 

would have a substantially larger eff ect. 

Cmax values diff ered substantially between participants, and for several sub-

ject, Cmax was even below 0.05 (Figure 5.5). Th us, at the level of individual offi  ce 

workers, software registrations of computer events may provide limited informa-

tion on muscle activity patterns during daily computer use. Too small exposure 

contrasts between computer work and non-computer work, specifi cally rest breaks, 

have been suggested in previous studies to be an explanation that introducing more 

non-computer activities had little eff ect on fatigue and discomfort (McLean et al. 

2001). Based on similar considerations, Fernström and Åborg (1999) concluded 

that job rotation between diff erent offi  ce tasks, including computer work, had 

limited eff ects as compared to performing only one of those tasks. Indeed, too 

little contrast between conventional, habitual offi  ce tasks may seriously limit the 

potential for creating an offi  ce job with adequate variation by combining those 

tasks (Mathiassen 2006), which, in turn, may call for more radical initiatives, 

such as introducing physical exercise at work. While some studies have been 

devoted to physiologic eff ects of combining standard offi  ce work with more vigor-

ous activities (Henning et al. 1997, van den Heuvel et al. 2003), more research is 

still needed to document appropriate exposure contrasts between candidate tasks 

for interventions aiming at more variation. Th ese studies should also explore the 

feasibility of using diff erent task combinations (Mathiassen 2006). Th e design of 

the present study did not allow any deeper analysis of whether specifi c tasks or 

activities occurred during “non-computer work” that had particular pronounced 

exposure contrast  as compared to computer work, and hence a greater potential 

to increase variation than “non-computer work” in general. 

Defi nition of computer work
In the present study, the optimal exposure contrast between “computer work” and 

“non-computer work” was obtained using an entirely data-driven procedure based 

on the recorded time-line of interactions with the keyboard and mouse. Previous 
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studies using event registration software have not defi ned the NCT using this 

optimization approach. In some of these studies, the NCT has been chosen on 

the basis of some generic idea of the time span that events can be apart for the 

time in-between still to be regarded as “computer work”, but the resulting NCT 

has ranged from 2.5 to 60 s, and consensus has not been reached yet (Richter et 

al. 2008). In some other studies using registration software, the NCT has been 

selected so as to produce an overall occurrence of “computer work” that corre-

sponded to that judged by a trained observer (Heinrich et al. 2004, Homan and 

Armstrong 2003). Th e defi nition of “computer work” is then essentially based on 

expert observation and might include both active use of the keyboard and mouse 

and reading from the computer screen. Notably, though, the observer and the 

software may not necessarily agree on the occurrence of “computer work” in real-

time, even though the overall duration of “computer work” is the same. 

In some research using questionnaires to estimate computer use duration, 

merely the use of input devices has been classifi ed as computer work (e.g. Homan 

and Armstrong 2003, Menendez et al. 2008) while in other questionnaire studies, 

computer work was also meant to include looking at the screen as well as short 

periods of thinking in front of the computer (e.g. Blangsted et al. 2004a, Korho-

nen et al. 2003). Moreover, computer users tend to largely overestimate the dura-

tion of their computer work (for an overview, see Richter et al. 2008), and more 

severely so with increasing time actually spent working with the computer. What 

a subject considers to be “computer work” thus seems to diff er from defi nitions 

based on more objective criteria. Th is general ambiguity regarding the defi nition 

and registration of “computer work” obstructs comparisons and combinations of 

studies. In the current study, the detailed records of EMG activity and computer 

input use throughout a whole working day in a substantial amount of participants 

allowed us to assess exposure and exposure contrasts during computer work and 

non-computer work using objective methods, which is an advantage compared 

to most previous studies.
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Diff erences in exposure and contrasts between sub-
groups of offi  ce workers (cf. question 2)

Although we did not fi nd diff erences in the number and duration of computer 

work episodes between CANS and control participants or between participants 

with diff erent job functions, some of the EMG variables diff ered signifi cantly 

between subgroups. A signifi cantly larger muscle activity in the dominant FCR, 

and a higher contrast value in the non-dominant trapezius were found in partici-

pants with CANS as compared to controls, but the numerical diff erences were 

small. Previous studies investigating EMG activity in offi  ce workers with and 

without CANS showed a similar tendency with either no diff erences in muscle 

activity between participants with and without CANS (Roe et al. 2001, Th orn et 

al. 2007, Voerman et al. 2006) or slightly higher trapezius and forearm extensor 

muscle activity in participants with CANS (Szeto et al. 2005). 

Participants with diff erent job functions showed some small but signifi cant 

diff erences in both the mean and variability of muscle load, most notable in ECR 

on both body sides. Th e diff erences between job functions could be expected, given 

the diff erent job contents and time schedules of the employees. Some diff erences 

between subgroups in the investigated EMG parameters may have been missed 

due to insuffi  cient power.

Loss of contrast when using group-based NCTs (cf. 
questions 3a and 3b) 

When the median NCTopt across all 30 participants was used on each individ-

ual instead of their personal optimum, contrast values decreased to, in median, 

between 0.09 and 0.19 depending on the muscle, as compared to 0.13 to 0.21 

using the subject-speci fi c NCTopt. Th is corresponded to a loss of contrast of on 

average 7%. 
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Th is further corroborates the notion that event registration software is of 

limited informative value with respect to muscle activity, in particular if used 

together with a “standard” NCTopt. Notably, choosing a standard NCTopt will be 

the preferred choice in large-scale studies, due to the extensive resource demands 

associated with determining a personal NCTopt for each individual. Th e prospects 

of using registration software may be better for other biomechanical exposures 

than EMG, but this remains to be investigated. 

Only small diff erences in loss of contrast were found between subgroups 

of participants (Table 5.1). Moreover, using a subgroup-based NCTopt value did 

not lead to a smaller loss of contrast as compared to using the overall group-based 

NCTopt. Th ese results suggest that a stratifi cation of participants into subgroups 

based on complaints of arm, neck and/or shoulder or job functions will not, to 

any notable extent, improve the ability of registration software to discriminate 

exposure.
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Conclusion

In conclusion, registration software could give some, but not much, information 

that was useful for discriminating muscle activity patterns during computer and 

non-computer work. Performance was limited even in the optimal case of using 

an individual-based, data-driven time threshold for distinguishing computer work 

episodes from non-computer work, and it decreased by a further 7% when apply-

ing a standard group-based discrimination threshold to all participants. Th is calls 

for caution when using registration software results as proxies of biomechanical 

exposure, in particular together with standard discrimination thresholds. A more 

strict defi nition of “computer work” and “non-computer tasks” during offi  ce work 

than that off ered by the software is necessary to arrive at better prospects for com-

paring and combining studies of computer-related activities, and thus to come to a 

better understanding of the associated biomechanical exposures and their relation 

to complaints of arm, neck and/or shoulder. Furthermore, our study suggests that 

the potential of conventional non-computer tasks to increase variation in muscle 

activity during computer-intensive offi  ce work is limited, at least in occupational 

settings similar to the one studied by us. In this case, more radical initiatives may 

be necessary, such as organized physical exercise at work.
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Abstract

Bayesian decision theory suggests that the statistics of an individual’s actions (prior 

experience) play an important role in motor control and execution. To elucidate 

this relation, we recorded 7 million mouse movements made by a group of 20 

computer users across a 50-day work period, allowing us to estimate the prior 

distribution of spontaneous hand movements.  We found that the most frequent 

movements were in cardinal directions. Th e shape of this distribution was partic-

ipant-specifi c but constant over time and independent of the computer that the 

participant used. Th is non-uniform directional distribution allowed us to predict 

systematic errors in initial movement directions, which matched well with the 

actual data. Th is shows how movement statistics can infl uence hand kinematics.
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Introduction

Th e body of literature focusing on the kinematics of target-directed arm move-

ments is vast — a search of PubMed using kinematics and arm movement as key-

words yielded more than 1,500 relevant hits. Among others, general characteristics 

of movement times and amplitudes (Fitts 1966), curvature (Flash and Hogan 1985, 

Wolpert et al. 1994), movement variability (Haggard and Richardson 1996, van 

Beers et al. 2004), movement directions (Baud-Bovy and Viviani 2004, de Graaf 

et al. 1991) and relations among these descriptors (Gottlieb et al. 1997, Smeets 

and Brenner 1999) have been extensively described. 

Recent theories of human perception and motor behaviour have hypoth-

esized that the found regularities are caused by the statistics of the visual world 

(like the distribution of fi xation locations) and our motor repertoire (Purves et 

al. 2001, Wolpert 2007). Th is Bayesian approach (Kording and Wolpert 2006, 

Kording 2007) requires a thorough knowledge of the statistics of sensory input 

and motor output. For visual perception, measurements of specifi c parameters 

of images and scenes can be used to obtain reliable statistics (Foster et al. 2006, 

Motoyoshi et al. 2007, Simoncelli 2003). 

Th ere is, however, no easy way to determine the statistics of human motor 

performance. If studies are limited to short-term changes in instructed move-

ments in a laboratory situation, the relevant statistics can not be determined (e.g. 

Krakauer et al. 2006). Th erefore, studies (Kording and Wolpert 2006, Wolpert 

2007) have only been able to infer the statistics of motor actions (referred to as 

priors) on the basis of observed movement variability within a very limited set of 

circumstances. Studies of natural, spontaneous arm movements over an extensive 

period of time are described have not been described (cf. Ingram et al. 2008). 

What amplitudes and directions are most commonly used? And are the movements 

straight? No knowledge about the statistics of such basic parameters is available. 

To gain insight into natural movement behaviour, we chose to measure com-

puter mouse use because it is a frequently occurring type of arm movement that 
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can be recorded without interfering with natural behaviour. Using custom-built 

registration software, we registered mouse movements in a group of 20 computer 

users for a period of 50 work days during real-life computer work. Th ese move-

ment trajectories were subsequently used to identify and characterize movement 

amplitudes, directions, velocities and curvatures of more than 7 million natu-

rally occurring arm movements. We will show that shape of the distributions of 

mouse amplitude and direction is similar across all participants, although highly 

participant-specifi c variations do exist (i.e., participants have a mouse signature). 

To investigate how these movement statistics infl uence motor execution, 

we reasoned that the uncertainty regarding movement amplitude and direction 

decreases during movement execution. At the onset of the movement, there is 

signifi cant uncertainty regarding the inverse kinematics and dynamics calculations 

needed to start a movement (Flash and Sejnowski 2001) due to proprioceptive 

and visual errors (Smeets and Brenner 2004, Sober and Sabes 2005). In a Bayesian 

approach this uncertainty is minimized by using prior experience (Kording and 

Wolpert 2006). Moreover, Bayesian theory explains how this uncertainty (in terms 

of the likelihood) and the prior experience (the Bayesian Prior) are to be combined 

to minimize errors in endpoint direction. Th is would mean that the initial muscle 

activation chosen to start a movement would be infl uenced by how likely it was 

to make a movement in a particular direction. Such a control scheme implies that 

the initial movement direction for a certain endpoint direction can be predicted 

on the basis of the frequency distribution of endpoint directions. Th e advantage 

is that during the initial stages of the movement, execution can be quickened by 

relying on the most common motor commands speeded-up. In this article, we 

will show that this is the case.
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Methods

Participants and data acquisition 

We installed custom-built registration software on the computers used by 20 par-

ticipants, healthy employees (9 men, 11 women; mean ± SD age = 33.9 ± 8.7 years) 

of the Erasmus MC in Rotterdam, the Netherlands. Participants signed informed 

consent forms before entering the study. Th e participants performed a variety of 

computer-intensive work; 8 had an administrative job, 6 were researchers and 6 

had managerial or other functions. Participants’ monitors had an aspect ratio of 

4 to 3. In all, 12 participants worked behind a monitor with a resolution of 1024 

by 768 pixels, 7 worked with a higher resolution screen and 1 worked with a lower 

resolution screen. Of the participants, each of 14 worked behind a single computer, 

whereas each of 6 worked with 2 diff erent computers.

Participants were instructed to turn off  the acceleration setting of the mouse 

and not to change the mouse gain during the measurement period. To establish 

how much the hand moved relative to the movement of the cursor on the screen, 

we had all participants perform a small calibration experiment in which they 

traced a square with a side of 3 cm on a piece of paper using the mouse. Across all 

participants, we found a gain of 197 ± 58 pixels/cm hand displacement.

Th e software registered the position of the cursor (x-, y-coordinates in pixels) 

with a frequency of 10 Hz and logged these data in the background not to interfere 

with the regular work of the participants. Th e unobtrusive nature of the installed 

monitoring software ensured that they quickly forgot that they were monitored. 

It is unlikely that participants altered their working behaviour as a consequence of 

participating in the study. Data were transferred automatically to a central server 

and processed offl  ine (Slijper et al. 2007).  To ensure that the data fi les (for each 

participant for every day) contained suffi  cient data, data fi les containing fewer 
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than 10,000 position changes of the cursor (>1 pixel) were not selected. For this 

study, we processed a random sample of 50 workdays for each of the participants.

Data processing

Identifi cation of individual cursor movements
For each of the 1000 recorded days, we extracted the times at which the cursor 

changed position. Th ese time series, containing the corresponding displacements 

of the cursor in horizontal direction (x) and vertical direction (y), were used for 

further analysis. 

To identify the start point and endpoint of cursor movements (see Figure 

6.1a) from the recorded time traces, we calculated the (vector) combined dis-

placement in x and y directions (xy). We considered as the start point of a cursor 

movement the sample after which the xy exceeded a threshold. Th e endpoint was 

defi ned as the sample after which xy became subthreshold. We chose a threshold 

of 5 pixels/sample (about 0.25 mm hand movement) to ensure we could calculate 

movement direction accurately for small amplitude movements (because the screen 

forms a grid of pixels, only a small number of movement directions are defi ned for 

very small movements). By using a threshold of 5 pixels, we excluded only 10.7± 

2.4 % of the movements.

For every cursor movement, we determined subsequently the movement 

time, the amplitude (straight distance from start point to endpoint), and the 

endpoint direction. To estimate the magnitude of hand displacements (in cm) 

for the recorded cursor displacements, we divided the found amplitudes by the 

individual’s gain factor from the calibration experiment. For every working day 

and for every computer separately these values were used to determine individual 

usage patterns (see Figure 6.2).
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Bayesian predictions
To investigate whether the statistics of movement directions infl uenced the initial 

movement direction of individual movements, we analysed movements for which 

this initial direction could be reliably determined. As our measurement method 

does not permit us to determine the direction of short movements, we restricted 

ourselves for this analysis to movements with amplitudes of at least 12 pixels and 

containing 5 data points or more (40% of the total number of movements).

According to Bayes’s rule, the chance of a (initial) movement direction ( i) 

given the sensory estimate e, is described as: 

Equation 6.1

P( e | i) =  
P( e | i)P( i)——————

P( e)

where P( e| i) is the sensory precision (given a direction i, the chance that the 

sensory estimate equals ( e), and P( i) is the a priori chance for i to occur. Th e 

chance P( e) is simply a normalization factor and does not change the relative 

probabilities between e and i. In the analysis, we modeled the sensory precision 

by a Gaussian distribution with SD = 17° and used the measured distribution of 

endpoint directions (histogram) as the prior. 

To fi nd the most likely value for the initial movement direction given a 

certain sensory estimate, i( e), we calculated the weighted average, or each value 

i multiplied by its chance to occur: 
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Equation 6.2

î( e) =  ∑
i

 i P( i | e) = ∑
i

 i P( e | i)P( i)

To compare this prediction with the actual relation between i and e, we 

calculated i - e by the angle between a straight line distance between start (S) and 

end location (E) and the line from S to the sample point (M), where the distance 

between the trajectory and the straight line distance between S and E was maximal 

(see Figure 6.3). If the initial movement direction deviated in clockwise direction 

compared with the endpoint direction, the angle was denoted as positive.
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Results

General characteristics

On average participants worked 8 hr and 29 min per day (computer on-off  time). 

During this period, they made on average 7192 (± 1967: SD between participants) 

cursor movements with a total duration of 1 hr and 12 min (± 23 min). During 

a day, the cursor followed a path of more than 1.5 million pixels (± 480,580), 

corresponding to approximately 74 m of hand movement. Figure 6.1a shows an 

example of the displacements during cursor movements made by 1 participant 

during 1 day of work. We translated the starting location of each movement to 

the origin (0,0). Note the non-uniform distribution of movements and the abun-

dance of horizontal and vertical movements. Th is was not a specifi c characteristic 

of this participant but was true for all participants (Figure 6.1b and c, compare 

the diff erent lines). Th e average median amplitude of the hand movements was 

0.32 ± 0.08 cm (corresponding to 62 ± 15 pixels of cursor movement). Shown 

in Figure 6.1b is the amplitude distribution of the hand movements for all the 

participants. Th e average median duration of the movements was 0.29 ± 0.05 s. 

Additionally, we found that the movements had a low average velocity (path length 

divided by the duration). Th e distributions of the average velocities showed that 

the majority (>50%) of mouse movements were performed with a hand velocity 

smaller than 1 cm/s.

Distribution of movement directions 

Th e preference for movements in cardinal directions on an average day for each of 

the 20 participants is shown in Figure 6.1c. Horizontal and vertical movements 

are most common in all participants. Almost half the movements (47.5%) were 

horizontal (within 22.5° from 0° [right] and 180° [left]), and 27% were vertical 
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(within 22.5° from 90° and 270°). Figure 6.1c shows that the directional patterns 

for diff erent participants (the diff erent lines) are quite similar. Note that horizontal 

and vertical cursor movements correspond to hand movements to the left and to 

the right and away and toward the body, respectively.

Variability in amplitude between individual movements (refl ected in the 

coeffi  cient of variation across all directions and participants) was on average 13% 

larger for diagonal directions than for cardinal directions.

When we looked into the data of individual participants in more detail, 

we found that the directional pattern was surprisingly invariant across days and 

that there were idiosyncratic diff erences between the participants (see Figure 6.2). 

For instance, the diff erence in number of horizontal and vertical movements is 

much larger for Participant 1 than for Participant 3. Similar distinctive patterns 

were found in all other participants. Such diff erences are not due to diff erences in 

hardware, as the directional pattern was also invariant across computer used for 

participants that worked on more than one computer (see data of Participants 5 

and 6 in Figure 6.2).

Predicting initial movement direction

Initial movement directions deviated systematically from the direction of the 

endpoint of movements. Averaged across all participant and days, these errors 

were up to 8°, depending on the movement direction (see Figure 6.3, solid line). 

It is interesting that the directional error changed sign at the peaks in relative 

Figure 6.1: Overview of results. (a) Typical example of cursor movements made by Participant 
3 during 1 day. Starting points of the movements have been translated to the origin (0,0); the 
endpoints of the movements are marked with a black dot. (b) Distribution of amplitudes of hand 
movements for all 20 participants (the diff erent lines) across days. The distribution (thick line 
group average) is skewed: Movements between 0.2 and 0.4 cm occur most often (median, 0.32 
cm). (c) Directional distribution of movements (averaged across days) for the 20 participants (the 
diff erent lines). The dashed line shows the distribution for random movements. Note the prefer-
ence for movements in cardinal directions. Directions are binned using 10° bins. Outer circle = 
1000 movements.
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Figure 6.2: Examples of individual directional distributions. The top 4 panels show data across 
25 days (the diff erent lines) from Participants 1–4. Histogram data were normalized by divid-
ing through the total number of movements for each day (scale: dimensionless units). Note the 
marked diff erences between the participants and the invariance of the pattern across days and 
computers. The lower four panels represent data generated by 2 participants working on two 
computers (left vs. right panels). Note the similarity in pattern between computers used by a single 
participant. P = participant; C = computer.
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Figure 6.3: Relation between initial movement direction and direction of the endpoint.  Shown 
are results for mouse movements across all participants. (a) Relative frequency of movements in 
particular directions (bins of 5°). A higher frequency of occurrence is related to smaller deviances 
in initial movement direction. The horizontal line denotes the average frequency across all move-
ment directions. (b) Error in initial movement direction ( i - e) was defi ned using the sample point 
M where the distance between the line S-E and movement trajectory was largest. i - e is shown as 
a solid line. The results of a Bayesian prediction of how initial movement direction depends on the 
distribution of mouse movement directions is shown by the dashed line. The found and predicted 
error in movement direction follow a similar shape across the movement directions. 
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frequency (0° and 180°; Figure 6.3) or was very close to zero (at 90° and 270°), 

and that the slope of the curve was positive. In other words, the movements that 

occurred most often were those that had the smallest error in initial movement 

direction, and movements that had endpoints close to these frequently occurring 

directions were biased to these directions. 

Using Bayesian inference, we made a prediction of how initial movement 

direction would deviate from the direction of the endpoint, on the basis of how 

often movements occurred in specifi c movement directions, as previously men-

tioned in the introduction. Figure 6.3 (dashed line) shows the results of this 

prediction. After averaging the predicted values across all participants, we found 

a highly signifi cant correlation of 0.703 (p < 0.0001) between the predicted errors 

and the found errors in initial movement direction. Note how the data follows 

the shape of the prediction across all movement directions. Th e quality of this 

correspondence varied per participant, but we found a positive correlation for all 

20 participants (on average, 0.44 ± 0.20; p < 0.01).
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Discussion

Directional pattern of the mouse movements

An important fi nding of the current study is that participants have strong direc-

tional preferences when making mouse movements. Th at is, movements in cardinal 

directions occur more often than diagonal movements (see star shapes in Figures 

6.1c and 6.2). 

At least two factors might explain such preferences: (a) the structure of 

the visual fi eld (here the computer-user interface) and (b) factors involving the 

motor control system (i.e., biomechanics and the visuo-motor transformation). 

Th e structure of the visual fi eld has a large infl uence on the direction and ampli-

tude of target-directed eye movements (saccades; Hooge et al. 2005), which are 

likely to precede the majority of mouse movements. Moreover, during computer 

use, the visual fi eld also directly evokes certain motor performance, because many 

of the objects on the screen are interactive. Th at is, they allow the participant to 

click, select, move, or drag visual objects by using the mouse.

Over et al. (2007) showed a preference for horizontal and vertical eye move-

ments in tasks where the participant is to search for a target within a rectangu-

lar fi eld. Th at is, participants’ eye movements tend to follow luminance edges 

surrounding the workspace. A similar eff ect could occur for mouse movements. 

Because the user interface of most computers consists of rectangular elements 

organized in rows and columns (lists, menus, tabs, fi elds, buttons, etc.), it would 

provide a large number of horizontal and vertical lines that could induce a prefer-

ence for mouse movements in cardinal directions. 

Although the directional pattern across participants looked quite similar 

(Figure 6.1c) the pattern also seemed to contain some idiosyncratic characteristics 

that were specifi c for the individual user (see Figure 6.2). Th us, it seems that indi-

viduals have a mouse signature, or a typical way in which they move their mouse. It 
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is likely that idiosyncrasies of the used software, such as the characteristics of the 

user interface of diff erent programs, infl uence a participant’s movement pattern in 

subtle ways, giving rise to reliable inter-individual diff erences as observed in the 

directional distributions of the movements. Further study is needed to determine 

whether this signature is more indicative of which software a participant uses or 

which participant uses particular software. Either way, it is important to notice 

that these small amplitude movements, occurring thousands of times each day, 

compromise our exposure and are therefore a prior for future movements.

A second factor that might underlay directional biases is a mechanical one. 

Because diff erent joint motions are involved when moving in diff erent directions, 

the inertia of the arm is not equal for all directions (inertial anisotropy; Flanagan 

and Lolley 2001, Gentili et al. 2004, Sabes et al. 1998). Maximum inertia is 

commonly seen for movements in the sagittal direction (movements that would 

be vertical on the computer screen) because of larger motion in the elbow and 

shoulder. Th is eff ect might explain the preference for horizontal cursor movements 

over vertical cursor movements, but not the preference for the cardinal axes over 

the diagonals. Control schemes based on the optimization of variables related to 

inertial properties of the arm seem therefore unlikely to be able to explain the 

observed directional preferences. Moreover, it is not very likely that this factor 

has a large infl uence because of the low velocities (and thus low acceleration) of 

the movements. 

We have found that initial movement errors were largest for diagonal direc-

tions (see Figure 6.3), that the error in initial movement direction depends on the 

direction of the endpoint, and that amplitude variability was largest for diagonal 

movements. Th ese fi ndings are in line with several experimental studies using 

relatively large arm movements (30–40 cm). Movements in oblique directions 

have the largest error in start direction (de Graaf et al. 1991), have the largest 

endpoint errors without visual feedback (Baud-Bovy and Viviani 2004), and are 

more curved (Smyrnis et al. 2007). 
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Several studies have assumed that these directional biases originate in a dis-

torted internal representation of target direction. Th e present data show that such a 

distortion may originate partly from the statistics of our actions. Using a Bayesian 

approach (Ghahramani 2000, Kording 2007), we showed that directional distribu-

tion of movements could be regarded as a prior for the initial movement direction. 

For instance, we found that movements slightly above or below the horizontal 

direction had an initial movement direction along the horizontal direction in line 

with the high occurrence of these movements. Th is could mean that participants 

move in a direction in which they are likely to make the least movement error. 

However, mouse movements are not totally unconstrained. Usually movements are 

made toward a target, which can have any location relative to the current cursor 

location. Most movements will thus require a movement in a specifi c movement 

direction, so that moving in the direction in which the individual makes the least 

error will therefore not be eff ective. 

Alternatively, the results we obtained could be explained by using an opti-

mization approach (Ghez et al. 1991), for instance, by minimizing jerkiness of 

the movement trajectory or energy expenditure. However, it will be diffi  cult to 

fi nd a cost function that can explain the large (on average up to 8°; see Figure 6.3) 

deviations in start direction, because highly curved trajectories are likely to cost 

more than straight trajectories.

Moreover, because the prior that is used in the Bayesian statistics method is 

known and the cost function that is used in a cost function analysis is an unknown, 

the most obvious method to model our mouse movement data is to use Bayesian 

statistics. Th erefore, a more likely explanation would be that individuals used prior 

experience and used this information to optimize the probability of moving in the 

right movement direction. Th erefore, the statistics of individuals’ actions infl uence 

movement execution: Th e more often movements are made in a particular direc-

tion the more likely the initial movement will point in that direction.
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In this chapter, the main results of the Chapters are summarized and interpreted, 

based on the fi ve research questions that were posed in the General Introduction. 

Secondly, the possible associations between computer use patterns and the occur-

rence of CANS are explored. Th irdly, the practical implications for research and 

practice and suggestions for future studies are described. To conclude, the question 

is answered whether we can use registration software to assess measures of physical 

exposure during offi  ce work.
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Answers to the research questions and 

interpretation 

1. What is the relationship between the non-
computer threshold (NCT) used and the 

duration of computer use? Is this relationship 
diff erent for diff erent groups of computer users? 
(Chapter 2)

For a large range of NCTs (1–120 s), we found a log-linear relationship between 

computer work duration and NCT, and a second-order relationship between both 

keyboard and mouse work duration and NCT. Furthermore, a two-fold increase in 

NCT resulted in a mere 3.5% increase in computer use duration, while for keyboard 

and mouse use, a two-fold increase in the NCT resulted in a variable increase in 

work duration of maximal 6%. Since both relationships were reliable and robust, 

these equations can be used as benchmarks for comparing work duration estimates 

in existing studies. Additionally, the diff erences in subject characteristics (gender, age 

and main job functions) in the relation between NCT and computer work duration 

were assessed. Th e subgroup diff erences that were found were mostly refl ected in diff er-

ences in intercept, which is an indication that subgroups diff er in the daily amount 

of computer use. Also, some interaction eff ects were found in the relationship between 

NCT and computer use duration. 

With the equations presented in Chapter 2, any NCT value between 1 and 120 

seconds can be used in calculations of computer use duration. However, previous 

research comparing computer use duration as measured both by registration soft-

ware and by (video) observation shows that an NCT in the range of 28–60 seconds 

(Chang et al. 2008) or, more specifi cally, 30 seconds (Blangsted et al. 2004a) results 

in a satisfactory correspondence between the two methods. Th erefore, using 30 
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seconds as NCT is recommended. Nevertheless, researchers should bear in mind 

that this is only an average value, so in real-time, the observer and the software 

may not necessarily agree on the occurrence of a single episode of computer work, 

even though the overall duration of ‘computer work’ might be the same. 

Furthermore, interaction eff ects were found between the relationship 

between NCT and the amount of computer work and subject characteristics 

(gender, age and job functions). Although these eff ects were rather small, this 

could theoretically lead to misclassifi cation of the exposure level if diff erent stud-

ies use diff erent NCTs. However, this problem will be solved if future studies use 

a NCT of 30 seconds. In current studies, this should be taken into account, but 

the interactions we found were too small to recommend ergonomists to analyse 

subgroups of offi  ce workers separately when assessing computer use duration. 

Additionally, adding keyboard and mouse use duration does not necessarily 

result in total computer use duration (but often in a higher value). Th is can be 

explained by the fact that mouse and keyboard use are often interlaced. For high 

NCTs, large time intervals between keyboard events (with possibly also mouse 

use) are classifi ed as keyboard use. When mouse use was used in between keyboard 

use, that whole period will also be classifi ed as mouse use, leading to a total of - 

theoretically - twice the duration of total computer use. Knowing this, researchers 

and ergonomists should not use keyboard and/or mouse use duration as a proxy 

of total computer use.

2. What personal or psychosocial factors 
infl uence the level of bias associated with self-

reported computer use duration? (Chapter 3)  

When measuring computer use duration with self-reports, participants usually overes-

timate duration when compared to registered computer use duration. We found that 

gender and psychological job demands were signifi cantly associated with the level of 

absolute relative bias (aRB), which is the absolute percentage of the diff erence between 
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self-reported and registered duration. Males had lower aRB than females, and aRB 

increased with increasing psychosocial job demands. Gender and job demands accounted 

for nearly 50% of the systematic bias in aRB, but these two factors only slightly reduced 

the within-subject variability (7%), and left the between-subject variability virtually 

unchanged (1.9% reduction). Due to a large amount of variation in aRB within the 

subgroups we analysed, the predictive values of these factors were low for individual 

computer users. Th ese results indicate that both estimates of computer use duration 

measure a diff erent construct of duration, and therefore both measures are important 

for assessing the impact of prolonged computer use.

Compared to computer use duration measured with registration software, com-

puter use duration measured by self-report has been found to hold a certain level 

of bias. Comparing these two is diffi  cult, since in previous research using self-

reports, a large variety of defi nitions is used to describe computer work. Some 

studies gave no specifi cations other than to estimate ‘computer use at work’ in 

self-reports (Douwes et al. 2007, Mikkelsen et al. 2007, Unge et al. 2005), while 

other researchers asked participants to distinguish between keyboard and mouse 

use duration (Heinrich et al. 2004, Homan and Armstrong 2003, IJmker 2008, 

Lassen et al. 2005) or about computer use in specifi c tasks (e.g. copy entry, copy 

editing, information retrieval (Faucett and Rempel 1996)). Other researchers 

included specifi cations in questionnaires on what should be counted as computer 

use, e.g. ‘active mouse and keyboard time’ (Lassen et al. 2005) or ‘computer use 

including reading from the screen’ (IJmker 2008). Th is may lead to large diff er-

ences in estimated computer use duration and makes interpretation of diff erences 

diffi  cult. 

Apart from this discrepancy in defi nition, it is largely unknown what factors 

infl uence the bias in self-reported computer use duration. Th e low predictive value 

of gender might explain the fact that often no infl uence of gender on duration 

estimation was found in literature (Balogh et al. 2004, Douwes et al. 2007, Faucett 
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and Rempel 1996); the studies probably did not have enough discriminatory 

power to prove the small infl uence of gender.

3. What are the pause patterns that computer 
users display and how does pause software 

infl uence the work-pause pattern? (Chapter 4)

Th e work-pause pattern of computer users can be described as highly intermittent 

behaviour with short duration work periods being followed by slightly longer, and 

very variable pauses. Furthermore, the distribution of pause duration follows a power 

law with a slope of approximately -2, meaning that pauses with twice the duration 

are twice less likely to occur.

When pause software is used on the computer, it adds on average 25% micro 

pauses (5–10 s) to the number of micro pauses participants take spontaneously, and 

57% macro pauses (5–8 min). However, these inserted pauses on average only add 

7.2% extra ‘pause time’ to a working day. Th e majority (89%) of all inserted pauses 

are micro pauses, and we found that those pauses are inserted only shortly (45 s) before 

participants would take a spontaneous pause. On the other hand, macro pauses were 

inserted much earlier (53 min) than the natural pauses participants would take. 

Th ese fi ndings led to the conclusion that it is unlikely that pause software contrib-

utes to reducing cumulative load, since it doesn’t add substantial ‘pause time’ to the 

working day. Secondly, the benefi t of adding micro pauses is doubted, since it does 

not considerably change the structure of the variability of the work-pause pattern 

of the working day. Th is might be the reason that two reviews on interventions 

against CANS have found limited or even mixed evidence for the eff ectiveness of 

introducing additional pauses (Brewer et al. 2006, Verhagen et al. 2007). 

Th e reason that pause software inserts micro pauses only shortly before 

users take spontaneous pauses (45 s) is that the NCT that is used (30 seconds) is 

larger than the duration of micro pauses (5–10 seconds in most pause regimes of 
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Workpace). Spontaneous, short-duration pauses taken by the computer user are 

therefore still classifi ed as computer work, and the micro pauses that the pause soft-

ware off ers are therefore abundant. Th e timing of micro pauses may even decrease 

the willingness of computer users to use pause software. We therefore suggest that 

computer users switch off  this functionality in their pause software, at least the 

group of computer users with no CANS. Since we did not study pause behaviour 

in computer users with CANS, we don’t know if their work-pause pattern is similar 

to the patterns we found in our (healthy) participant group. 

A limitation of the current simulation study is that the work-pause behaviour 

that occurs if participants would actually receive micro and macro pauses from 

software could not be measured. Some mechanisms that could occur are speed-

ing up computer work, working through regular pauses, or non-compliance to 

the pause regime (Mathiassen 2006, van den Heuvel et al. 2003).  However, in a 

review, Lötters and Burdorf concluded that a 14% reduction in physical load is 

needed to induce a corresponding decline in CANS (2002). It is unlikely that the 

above described compensatory mechanisms could result in a two-fold increase of 

the pause time we found in our study (7.2%).

4. What are the diff erences in exposure between 
computer and non-computer work and how 

do these diff erences contribute to overall exposure 
levels and variability? (Chapter 5)

Mean EMG (electromyography) in three muscles in the lower arm and shoulder was 

higher during non-computer work (NCW) than during computer work (CW). Also, 

EMG variability was higher in NCW than in CW. At small NCT values (2–5 s), 

computer work was characterized by low muscle activity with little variability. Th e 

maximal contrast between CW and NCW was reached at NCTs between 7 and 20 

s. However, this contrast was rather low (range 0.13–0.21), mainly caused by sub-

stantial within-subject variability in CW and especially in NCW. With standard 
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discrimination thresholds instead of individual optima, discriminative power decreased 

even further.  

Based on the rather low contrast that was found between computer work and non-

computer work, which further decreased when using a standard NCT, we conclude 

that computer activity logs should be used cautiously as proxies of biomechani-

cal exposure. According to the results of the EMG measurement performed in a 

subgroup of our total research population, conventional non-computer tasks may 

have a limited potential to increase exposure variation in terms of muscle activity 

to the work day in computer-intensive offi  ce work. Th e design of the study did 

not allow for further analysis of whether specifi c non-computer tasks or activities 

may have had higher exposure contrast compared to computer work. Some specifi c 

non-computer tasks may have a greater potential to increase variation to the work 

day than the overall ‘non-computer work’ of our participants. However, some 

additional information on NCW tasks was present in the current study. We know 

that our participants did not perform high-intensity non-computer tasks such 

as sports, and did not leave the building during the measurement. We therefore 

hypothesize that more radical non-computer tasks, such as organized physical 

exercise at work, may be necessary to increase exposure variation, which in turn 

might help to reduce the risk of developing musculoskeletal complaints (CANS). 

We used EMG as a measure of biomechanical exposure because it is widely 

used in studies of computer work to assess the duration, level and variability of 

muscle activity in the upper extremity (e.g. Huysmans et al. 2008, Larsman et al. 

2009, Mork and Westgaard 2007). However, we realize that EMG is not the only 

measure of exposure. Other measures, like registration of upper arm postures or 

movement velocities and accelerations of the arm and hand, used to measure forces 

on the skeleton and muscles, are needed to gain full understanding of the physical 

exposure offi  ce workers are experiencing. However, so far, our study using EMG 

is one of the few studies available on physical exposure of offi  ce workers. It shows 

that it is diffi  cult to discriminate computer work from non-computer work on 
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the basis of the level and variability of muscle activity. Th is indicates that physical 

risk factors for CANS cannot be solely attributable to computer use per se. Also 

non-computer work episodes during offi  ce work might present similar risk factors 

for CANS, which suggests that studying merely computer work is not suffi  cient 

in understanding the complex of risk factors associated with CANS. Th is could 

even implicate that computer use might not be the main risk factor for CANS, 

but that the research focus should be on going to the offi  ce. 

5. What are the characteristics of mouse 
movements during daily computer use and 

how can these patterns be explained? (Chapter 6)

On average, mouse movements during daily computer use were quite small (0.32 ± 

0.08 cm from start point to end point), had a short duration (0.29 ± 0.05 s) and a 

low average velocity (>50% had a hand velocity smaller than 1 cm/s). Additionally, 

the participants had strong directional preferences when making mouse movements; 

movements in cardinal directions (horizontal and vertical) occurred much more often 

(in 75% of all movements) than movements in diagonal directions. One of the factors 

that might explain this preference is the lay-out of the computer-user interface, for 

instance the fact that buttons and program menu structures are grouped horizontally 

and vertically. What’s more, the mouse patterns we found seemed to contain some idi-

osyncratic (i.e. subject-specifi c) characteristics in the directional pattern. It thus seems 

that individuals have their own ‘mouse signature’. Finally, the mouse movements that 

occurred most often had the smallest error in initial movement direction compared to 

the direction of the endpoint (the movements were straighter). Th is suggests that com-

puter users use prior experience to move in the right movement direction.

Th e current study reveals that some characteristics of mouse movements were very 

subject-specifi c. Large between-subject variability in mouse use behaviour and 

markedly smaller within-subject variability over days was found. In our study, the 
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acceleration setting of the mouse was turned off , and we compensated for the dif-

ferences in mouse cursor velocity. When we measured mouse movements in single 

participants who worked at diff erent computers, these subject-specifi c directional 

preferences remained. Because of privacy regulations in the hospital, it was not 

possible to measure the diff erent programs participants worked with. Th erefore, 

the question remains whether the found mouse signature is more indicative of 

which software a participant uses (software characteristic) or which participant 

uses particular software (personal characteristic). 

 Furthermore, we found that the initial mouse movement direction did not 

always point towards the endpoint direction, creating a certain level of curvature 

in the movement trajectory. Th is curvature was largest in movements that occurred 

in diagonal direction. We found that the discrepancy between initial and endpoint 

direction could be partly explained by how often a particular participant moved in 

a particular endpoint direction (using Bayes Rule). Th e more often a movement 

was made in a particular endpoint direction, the smaller the discrepancy between 

initial and endpoint direction and therefore, the straighter the movement. 
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CANS and patterns of computer use

Th e aim of the current dissertation was to describe (natural) patterns of computer 

use and provide suggestions on how these patterns might be related to complaints 

of arm, neck and/or shoulder (CANS). As described in the General Introduction 

and according to the Brussels Model, long-duration repetitive and static loading 

of the upper limb with little exposure variability is thought to be related to CANS 

(Flodgren et al. 2007, Jensen 2003, Johansson 2003, Tittiranonda et al. 1999, van 

Rijn et al. 2009). Below, we describe in what way the results in the dissertation 

relate to these measures of physical exposure.  

Computer use duration

In the current dissertation and previous research, the level of computer use dura-

tion was found to depend on the method of assessment (Douwes et al. 2007, 

Faucett and Rempel 1996, Heinrich et al. 2004, Homan and Armstrong 2003, 

Lassen et al. 2005, Mikkelsen et al. 2007, Unge et al. 2005). Th is is consistent with 

the fi nding that the relationship between computer use duration and the onset 

of CANS is much stronger for self-reports than for registration software (IJmker 

2008). Th is indicates that these two measures measure a diff erent construct. 

In this dissertation, the relation between NCT (non-computer threshold) 

and the duration of computer use was compared for diff erent participant character-

istics (gender, age, job function). Mostly interactions were found between subject 

characteristics in the relationship between NCT and computer work duration. 

Th is means that with diff erent NCTs, diff erent subgroups might be classifi ed as 

having the longest duration, and therefore, misclassifi cation in exposure might 

occur. 
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Static loading and exposure variability

Th e number of days that was needed to reliably estimate a six-month exposure 

period of computer use duration was calculated in this dissertation. We found 

that measuring computer use duration for at least 44 days within a period of six 

months was needed for our chosen level of reliability (CV<10% for 90% of par-

ticipants). Th us, for a reliable measure of natural computer use duration over an 

extended period of time, it is necessary to take the large between-day variability 

into account and measure computer use duration longer than one day or one week.

Furthermore, we found that pause software does not introduce enough 

pause time (7.2% extra) to substantially change the natural work-pause pattern 

of a group of offi  ce workers. Th is is an indication that pause software does not 

substantially decrease cumulative loading during computer work. Secondly, the 

offi  ce workers we measured took relatively many spontaneous pauses before the 

pause administered by the software. Th ese additional pauses did not substantially 

increase exposure variation. We therefore conclude that pause software only mar-

ginally changes computer pause patterns, and thereby does not reduce the occur-

rence of CANS. However, pause software might work through diff erent mecha-

nisms that we did not look at (e.g. an awareness eff ect by the introduction of extra 

pauses), which could possibly have a positive eff ect on the prevention of CANS. 

On the other hand, we found that episodes of computer work are poorly 

discriminated from episodes of non-computer work, because of the large within-

subject variability in EMG level in both types of episodes. Th is would mean 

that physical exposure during non-computer work (including breaks) is not sub-

stantially diff erent from exposure during computer work. It suggests that adding 

additional pauses will not help to increase exposure variability. 

We found that offi  ce workers mostly make mouse movements with a small 

amplitude, short duration and low average velocity. Furthermore, horizontal and 

vertical movements are most common, and the directional mouse movement 

pattern is very subject-specifi c, non-uniform and invariant over days. Th ere are 
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indications that mouse movement is related to CANS through three pathways: 

Th e hand amplitude in mouse use is small (average median amplitude in our 

study was 0.32 cm), which shows that mouse movement is quite a static move-

ment. Secondly, with only small movements, the whole computer screen can be 

reached, meaning that a high precision is demanded during mouse use. It has been 

suggested that these precision demands play an important role in the etiology 

of CANS (Huysmans 2008). Th irdly, the non-uniformity of mouse movements 

(depicted by the ‘star shape’) would impose hand and/or arm kinematics with less 

exposure variability. 
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Recommendations for research and 

practice

Ever since the introduction of registration software, ergonomists have been eager 

to use software to estimate workers’ computer behaviour. However, as this dis-

sertation has pointed out, while the process of installing registration software and 

monitoring input device use for an extended period of time is relatively simple, 

the analysis and the interpretation of the recorded time traces are by no means 

straightforward. Below, some suggestions are given on how to make optimal use 

of registration software as a measure of physical exposure. 

Practical implications

• Although the equations in Chapter 2 have made it easy to recalculate com-

puter use duration in case studies use diff erent NCTs, using a NCT of 30 s 

is recommended when measuring computer use with registration software. 

However, for the ergonomist in the fi eld, it might not always be possible to 

install registration software. In this case the ergonomist could assess work 

duration manually (observation) with a relatively large NCT like 120 s 

(which is less labour-intensive than a smaller NCT), and the use the formula 

in Chapter 2 to calculate the duration at a NCT of 30 s. Th eoretically, one 

could set a timer every two minutes and decide after the time has passed 

whether or not the behaviour in question was performed (e.g. mouse or 

keyboard use).

• If one is interested in exposure across a long time span (for example six 

months), a substantial amount of days should be measured in order for 

the daily exposure to be a reliable estimate of the average exposure across 

the measurement period (44 days in a measurement period of six months). 

Th is amount is a conservative measure in order to represent 90% of all 
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participants and keep the relative error to a minimum (CV <10%). In ergo-

nomic research, it will not always be possible or even necessary to monitored 

offi  ce workers for such a long time. However, this is an indication that in 

order to reliably estimate regular computer use duration in offi  ce workers, 

measuring computer use for only one work day or even a part of a work day 

does not represent the natural between-day variability in duration.  

• In previous epidemiological studies measuring computer use with registra-

tion software, the computer-related factors that were assessed were aver-

aged over days by the mean or median of individual days (IJmker 2008, 

Andersen et al. 2008, Chang et al. 2007). With this method, all information 

on the within-day variability disappears. In this dissertation, it was revealed 

that several computer-related variables (such as pause durations, mouse 

movement distribution, mouse amplitude) do not follow a normal (Gaus-

sian) distribution when measured throughout a working day. Th is means 

that averaging these variables without taking the dispersion into account 

is arbitrary and thus not representative for the within-day variability in 

computer use. In order to measure this within-day variability, registration 

software should be used that not only stores daily statistics about computer 

events, but also takes the daily dispersion of computer events into account.  

• Since individual contrast values were low, this is an indication that registra-

tion software may provide limited information on muscle activity patterns 

during daily computer use and that the results should be used with caution 

as proxies of biomechanical exposure. Th e low contrast between conven-

tional offi  ce tasks may seriously limit the potential for creating an offi  ce 

job with adequate variation (Mathiassen 2006), which, in turn, may call 

for more radical initiatives, such as introducing physical exercise at work.
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Future research

• In the current research, the occurrence of CANS was only assessed once 

every six months. Combining this with the fact that CANS in the upper 

extremity have a strong episodic nature, this indicates that when research-

ers study the relation between computer work and CANS, CANS should 

be assessed more often in order to identify the onset of an episode. One of 

the solutions might be a daily or weekly pop-up screen in the registration 

software, in which questions on CANS (or eff ects of CANS, like productiv-

ity) are asked.

• In Chapter 4, we described the eff ects of pause software in participants 

without CANS, and did not fi nd a large eff ect of additional pauses on the 

natural work-pause pattern of participants. However, it would be interesting 

to perform these analyses for participants with (recovered) CANS. It might 

be that these participants have a diff erent work-pause pattern, thus altering 

the eff ect of pause software.

• Since much variability in EMG existed between episodes within computer 

tasks and non-computer tasks, the contrast between the two tasks was low. A 

more strict defi nition of ‘computer tasks’ and ‘non-computer tasks’ might be 

necessary to arrive at better prospects for comparing and combining studies 

of computer-related activities, and thus to come to a better understanding 

of the associated biomechanical exposure and their relation to CANS. Th is 

could be achieved by software that logs the computer programs and appli-

cations that offi  ce workers use, or by an additional diary or observation 

method. Hereby, more specifi c information can be obtained on potential 

harmful or peculiar computer use behaviour, which in turn also will help 

the producers of these programs or applications improve their software.
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Can we use registration software to assess physical 
exposure during offi  ce work? 

Yes, registration software can be used for unobtrusively and objectively 

assessing parameters of natural computer use input, since software 

is an unobtrusive, easy to collect and cheap method to measure computer use 

input over an extensive period of time. A large within- and between day variability 

in certain computer use parameters exists, so in order to reliably capture day-to-

day physical exposure, a method that enables longer duration measurements is 

important. Second, by measuring only the cumulative duration of computer use 

as a measure of physical exposure during computer use (and often averaging this 

duration over days or even weeks), important sources of variability in exposure 

within and between days are lost. Th ird, CANS have an episodic nature, meaning 

that episodes of CANS might be short, but recurrence rates are high. Th e exact 

time of onset of an episode of CANS is hard to defi ne, and CANS may require a 

certain induction time of exposure and a latency time before the onset of symp-

toms. Th erefore, detailed information on exposure is required over an extensive 

period of time, and registration software is to date the only exposure method that 

ensures this.

No, because with the present knowledge, self-reported computer use 

duration predicts the onset of CANS better than duration measured 

with registration software. Apparently, the perception of computer duration is not 

comparable to duration measured with software, and software thus cannot replace 

self-reports. However, as a reference method, software can provide insight in the 

factors that infl uence the level of self-reported duration.

Maybe, because little contrast in muscle activity was found 

between periods of computer work and periods of 

non-computer work. In this regard, registration software may not be optimal as 

a proxy of biomechanical exposure. However, a full understanding of exposure 

during offi  ce work has not yet been reached, and therefore, future research should 



Chapter 7

158

7

explore diff erent measures for exposure in diff erent groups of offi  ce workers in 

order to come to a better understanding of the biomechanical exposure during 

offi  ce work.
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List of Abbreviations

 Difference

 Degrees
2

b Between-worker variance
2

w Within-worker variance

 Direction

AIC Akaike Information Criterion

ANCOVA Analysis of Covariance

ANOVA Analysis of Variance

aRB Absolute value of Relative Bias

CANS Complaints of the Arm, Neck and/or Shoulder

C Contrast 

CV Coefficient of Variation

CW Computer Work

D Dominant body side

DASH Disabilities of the Arm, Shoulder and Hand

ECR Extensor Carpi Radialis

EMG Electromyography

Etot Total number of computer events

FCR Flexor Carpi Radialis

Hz Hertz

IQR Interquartile Range

LMM Linear Mixed Model

Ln Natural logarithm

Log Logarithm

MSC Musculoskeletal Complaints

MSE Mean Squared Error

NCT Non-Computer Threshold

NCTopt Non-Computer Threshold for maximum Contrast
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NCW Non-Computer Work

ND Non-Dominant body side

OR Odds Ratio

P Precision

PWT Percentage computer work of the Work Time

PWTk Percentage keyboard work of the Work Time

PWTm Percentage mouse work of the Work Time

RB Relative Bias

RSI Repetitive Strain Injury

RVE Reference Voluntary Exertions

s seconds

s2 Variance

Trap Trapezius pars descendens

SD Standard Deviation

WT Work Time
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Summary

The introductory Chapter 1 describes the background of the studies included 

in this thesis. Consistent evidence has been found for a relationship between 

computer use and complaints of the arm, neck and/or shoulder (CANS, or upper 

extremity complaints). However, a gap exists in the knowledge on which factors 

best describe physical exposure during computer use, and, consequently, which 

exact exposure factors pose a risk for CANS. The aim of the current dissertation is 

to describe patterns of computer use and provide suggestions how these patterns 

might be related to CANS. For this purpose, a longitudinal study was performed 

on 571 office workers with diverging professions but all with regular compu-

ter work. Patterns of computer use were studied by monitoring each participant 

by means of registration software, and participants also filled in questionnaires 

throughout the study. This registration software registered mouse and keyboard 

use with high precision (10 Hz) for a total period of two years. This dissertation 

has pointed out that while the process of gathering input device use through soft-

ware is relatively simple, the analysis and interpretation of the recorded time traces 

are by no means straightforward. Software stores single computer events (as an 

example: one mouse click occurs at 10 a.m. and another one 20 seconds later), and 

in order to measure a period of computer use, a certain threshold (non-computer 

threshold or NCT) has to be chosen to connect these single events. Exceeding this 

threshold classifies the time between the mouse clicks (or other computer events) 

as non-computer work. Dependent on which NCT one chooses, the total duration 

of computer throughout a work day either increases or decreases.

In Chapter 2 of this dissertation, we describe how computer use duration depends 

on which NCT is used. A log-linear relationship between NCTs and computer 

use duration was found to fit the data best, in which a two-fold increase in NCT 

led to an increase in computer use duration with only 3.5%. The relationship 

between NCT and mouse use duration and keyboard use duration was assessed 
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as well, and showed a similar slow increase. Only small differences in the relation 

between NCT and duration were found within subgroups (categorised based on 

gender, job function or age category), what implicates that groups of participants 

shared rather similar work-pause patterns. This is an indication that the relation-

ships in this Chapter can be generalised to professions with different main job 

functions which consist of frequent computer use. With the equations presented 

in this chapter, studies measuring computer use duration can be compared, even 

though they use different NCTs.

In Chapter 3, different methods for assessing computer use duration are compared. 

Apparently, when participants were asked about the duration of their computer use, 

their estimate was higher than when this duration was measured with registration 

software. Furthermore, the results from this study showed that duration estima-

tions by women deviated more from registered duration than estimations by men, 

and that the estimation deviated more with increasing psychosocial job demands. 

One of the reasons for the difference between the two methods is probably that 

the two methods measure different aspects of computer use, and therefore both 

measures are important to assess the impact of prolonged computer use.

In Chapter 4, the natural pause patterns of healthy office workers were studied, 

as well as the influence of pause software on this pattern. The work-pause pattern 

of computer users can be described as intermittent behaviour, in which short 

periods of computer use are being followed by longer, very variable pauses. When 

pause software (in this study Workpace was used) offered additional pauses dur-

ing computer work, it added only on average 7.2% pause time to the work day. 

This was not sufficient to change the natural work-pause pattern of computers 

users, although this change is seen as possible solution against CANS. Further-

more, the timing of the added pauses was not optimal; most of the added pauses 

(short ‘micro breaks’) were offered on average only 45 s before users would take a 



Summary

180

similar, spontaneous pause. These results might be the reason that recent reviews 

concluded that the interventions against CANS that offer pauses are not effective. 

In Chapter 5, the difference in muscle activity in shoulder and lower arm muscles 

between computer and non-computer activities was assessed, in order to find out if 

non-computer tasks can indeed increase exposure variation and thus reduce CANS. 

The results showed that the mean muscle activity and the mean level of variability 

of muscle activity are higher during non-computer work than during computer 

work. Nevertheless, registration software gave some, but not much information 

that was useful for discriminating muscle activity patterns during computer work 

and non-computer work (low contrast). This was mostly due to a high level of vari-

ation in the outcome measures between periods of non-computer work (or, simply 

said: periods of non-computer work are not alike). This lack of contrast indicates 

that physical risk factors for CANS are not solely attributable to computer work 

per se, but that physical risk factors might be present in non-computer work as 

well. It also suggests that the lack of variation in muscle activity during computer 

use is not compensated by regular non-computer tasks, so perhaps more radical 

initiatives to introduce more variation in the work day may be necessary, such as 

organized physical exercise at work.

In Chapter 6, patterns of computer mouse use during daily office work were ana-

lysed. On average, mouse movements were very small (hand movement of 0.32 

cm), had a short duration (on average 0.29 s) and had a low average speed (>50% 

of hand movements were lower than 1 cm/s). Also, the participants were found 

to have strong directional preferences in movement direction: horizontal and 

vertical movements occurred much more often (in 75% of all movements) than 

movements in diagonal directions. Finally, the mouse movements that occurred 

most often had the smallest error in initial movement direction compared to the 

direction of the endpoint (the movements were straighter). This suggests that 

computer users can use prior experience to move in the right movement direction. 
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In Chapter 7, the studies in this dissertation are being discussed, based on the 

research questions posed in the General Introduction. Also, we discussed to what 

extent the main physical risk factors for CANS in computer use (prolonged com-

puter duration, static loading and lack of exposure variability) were present in the 

computer use variables which are described in this dissertation. Subsequently, the 

practical implications for ergonomists and researchers are discussed, and sugges-

tions are being made for future studies. Summarizing, the information from this 

dissertation can help with the analysis and interpretation of registered computer 

use, but the main take-home message is to think critically about when and how 

to use registration software in office work.
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Samenvatting

Het inleidende Hoofdstuk 1 beschrijft de achtergrond van de studies die in dit 

proefschrift beschreven staan. Er is een duidelijke relatie tussen computergebruik 

en klachten aan arm, nek en/of schouder (KANS, ook wel RSI genoemd). Toch 

is nog onvoldoende duidelijk welke factoren de fysieke blootstelling tijdens com-

putergebruik het beste omschrijven, en ook is nog niet bekend welke van deze 

factoren precies een risico vormen voor KANS. Het doel van dit proefschrift is het 

beschrijven van patronen van computergebruik, en het geven van suggesties hoe 

deze patronen gerelateerd kunnen zijn aan KANS. Om dit te achterhalen is een 

longitudinale studie uitgevoerd met 571 kantoormedewerkers die uiteenlopende 

beroepen hadden, maar allemaal regelmatig computerwerk verrichtten. Patronen 

van computergebruik werden bij iedere deelnemer gemeten met behulp van regis-

tratiesoftware, en deelnemers vulden ook vragenlijsten in gedurende het onderzoek. 

De registratiesoftware registreerde muis- en toetsenbordgebruik met een hoge 

precisie (10 Hz) voor een totale periode van twee jaar. Uit dit proefschrift blijkt 

dat het verzamelen van computer-invoer weliswaar relatief gemakkelijk is met 

registratiesoftware, maar dat de analyse en interpretatie van de opgeslagen varia-

belen allerminst eenvoudig is. Zo slaat software losstaande computer-invoer op in 

de tijd (als voorbeeld: één muisklik wordt opgeslagen om 10 uur, en een tweede 

20 seconden later), maar om een periode van computergebruik te kunnen meten 

moet er een bepaalde drempelwaarde (non-computer threshold of NCT genoemd) 

gekozen worden om die losse muisklikken met elkaar te kunnen verbinden. Als de 

tijd tussen twee opeenvolgende muisklikken (of andere computer-invoer) langer is 

dan de NCT, wordt de periode tussen de twee klikken niet-computerwerk genoemd. 

Afhankelijk van welke NCT je kiest, wordt de totale duur van computergebruik 

over een werkdag langer of korter.

In Hoofdstuk 2 van dit proefschrift beschrijven we hoe de duur van computer-

gebruik afhangt van welke NCT gebruikt wordt. Een log-lineaire relatie tussen 
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NCTs en duur van computergebruik beschreef de data het beste, waarbij een ver-

dubbeling van NCT voor een stijging in computerduur van slechts 3.5% zorgde. 

Daarnaast is ook naar de relaties tussen NCT en de duur van muisgebruik en van 

toetsenbordgebruik gekeken, en deze lieten dezelfde trage stijging zien. Er zijn 

slechts kleine verschillen in de relaties tussen NCT en computerduur gevonden 

binnen subgroepen (gecategoriseerd naar geslacht, werktaak of leeftijdscatego-

rie), wat impliceert dat de gevonden relaties bruikbaar zijn voor andere beroepen, 

zolang ze maar regelmatig met computers werken. Met de formules uit Hoofdstuk 

2 kunnen studies worden vergeleken die computergebruik meten, ook al gebruiken 

ze hiervoor verschillende NCTs.

In Hoofdstuk 3 worden verschillende methoden vergeleken om computergebruik 

te meten. Wanneer mensen gevraagd werd de duur van hun computergebruik in 

te schatten, gaven ze een hogere schatting dan wanneer deze duur met software 

gemeten wordt. Daarnaast bleek dat vrouwen een meer afwijkende inschatting van 

computerduur te maken dan mannen, en week de inschatting meer af naarmate 

mensen hun werk veeleisender vinden. Een reden voor het verschil tussen de twee 

methoden is waarschijnlijk dat de beide maten van computerduur een ander aspect 

van computergebruik meten, en dus beide maten belangrijk zijn om de impact 

van langdurig computergebruik te bepalen.

In Hoofdstuk 4 is gekeken naar de natuurlijke pauzepatronen van kantoormede-

werkers, en is onderzocht hoe pauzesoftware dat patroon kan beïnvloeden. Het 

werk-pauzepatroon van computergebruikers kan het beste omschreven worden als 

intermitterend, waarbij korte perioden van computergebruik worden opgevolgd 

door langere, erg variabele pauzes. Wanneer pauzesoftware (in deze studie is Work-

pace gebruikt) extra pauzes aanbood tijdens computerwerk, voegde dat gemiddeld 

maar 7.2% extra pauzetijd toe aan de werkdag. Dit was niet voldoende om het 

natuurlijke werk-pauzepatroon te veranderen, terwijl die verandering wel gezien 

wordt als mogelijke oplossing tegen KANS. Ook was de timing van de extra pauzes 
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niet optimaal: het merendeel van de pauzes (korte ‘micropauzes’) werd gemiddeld 

maar 45 seconden voordat mensen een soortgelijke spontane pauze zouden nemen, 

aangeboden. Deze resultaten kunnen de reden zijn dat recente reviews conclu-

deerden dat de interventies tegen KANS die pauzes aanbieden niet effectief zijn.

In Hoofdstuk 5 is onderzocht of spieractiviteit in schouder- en onderarmspieren 

verschilt tussen computerwerk en alles dat niet geclassificeerd wordt als compu-

terwerk, om zo te onderzoeken of ‘niet-computerwerk’ de variatie in blootstelling 

daadwerkelijk kunnen verhogen om zo KANS  tegen te gaan. Uit de resultaten 

bleek dat zowel de gemiddelde spieractiviteit als de variabiliteit in spieractiviteit 

tijdens niet-computerwerk in alle onderzochte spieren hoger waren dan tijdens 

computerwerk. Toch bleek registratiesoftware maar weinig informatief voor het 

onderscheiden van spieractiviteit tussen computerwerk en niet-computerwerk 

(laag contrast). Dit kwam vooral door de grote variatie in spieractiviteit tussen 

periodes van niet-computergebruik (simpel gezegd: de ene periode van niet-com-

putergebruik is de andere niet). Dit gebrek aan contrast impliceert dat fysieke 

risicofactoren voor KANS niet volledig toe te schrijven zijn aan computergebruik, 

maar dat voor het vinden van risicofactoren voor KANS wellicht ook in niet-

computergebruik gezocht moet worden. Ook suggereert het dat het gebrek aan 

variatie in spieractiviteit tijdens computergebruik te weinig wordt gecompenseerd 

door normale niet-computertaken, en dat dus wellicht extremere maatregelen 

genomen moeten worden om meer variatie te introduceren in de werkdag, zoals 

sporten op het werk.

In Hoofdstuk 6 is zijn patronen van muisgebruik tijdens dagelijks computerwerk 

gemeten. Muisbewegingen bleken gemiddeld erg klein te zijn (0.32 cm hand-

beweging), een korte duur te hebben (gemiddeld 0.29 seconden) met een lage 

gemiddelde snelheid (>50% van de handsnelheden was kleiner dan 1 cm/s). Ook 

hadden de proefpersonen sterke voorkeuren in bewegingsrichting: horizontale en 

verticale bewegingen kwamen veel vaker (in 75% van alle bewegingen) voor dan 
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bewegingen in diagonale richtingen. Tenslotte hadden  de muisbewegingen die 

het vaakst voorkwamen ook de kleinste afwijking in beginrichting ten opzichte 

van de richting van het eindpunt  (de bewegingen waren dus rechter). Dit sug-

gereert dat computergebruikers hun ervaringen kunnen gebruiken om de muis 

in de juiste richting te bewegen. 

In Hoofdstuk 7 zijn de onderzoeken in dit proefschrift besproken op basis van 

de vijf onderzoeksvragen die in de Introductie gesteld zijn. Ook is bekeken in 

hoeverre de belangrijkste fysieke risicofactoren voor KANS (lange computerduur, 

statische belasting en gebrek aan variabiliteit in blootstelling) aanwezig waren in 

de variabelen van computergebruik die beschreven zijn in dit proefschrift. Verder 

is de toepasbaarheid van dit onderzoek voor ergonomen en voor onderzoekers 

toegelicht, en worden suggesties gedaan voor toekomstige studies. Samengevat 

kan de informatie uit dit proefschrift helpen bij het analyseren en interpreteren 

van geregistreerd computergebruik, maar het belangrijkste aandachtspunt is toch 

om kritisch na te denken in welke situatie en op welke manier registratiesoftware 

het beste te gebruiken is. 
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Dankwoord

Mijn proefschrift is klaar!! Wat een heerlijk moment om even terug te denken aan 

de afgelopen jaren, en aan alle mensen die me ieder op hun eigen manier hebben 

geholpen. En hoe zelfstandig ik ook beweer te zijn, ik ben er van overtuigd dat ik 

zonder deze mensen dit proefschrift nooit had kunnen schrijven.

Beste Maarten, toen ik op sollicitatie kwam bij jou en Harm (waarvan ik 

eigenlijk dacht dat het een oriënterend gesprek was), was ik in de loop van het 

gesprek vergeten wie nou ook alweer wie was. Jullie waren allebei heel casual 

gekleed, haren door de war en beide even relaxed. Zo had ik me het hoofd van 

de groep Frens niet voorgesteld! En ook nadat je hoogleraar geworden was, en je 

officieel mijn promotor werd in plaats van Gerard, bleef je de kalmte en relaxtheid 

zelve. Bedankt voor het meedenken, het bewaken van mijn voortgang, en niet in 

de laatste plaats de gezelligheid van de groep Frens, die me nog lang bij zal blijven.

Harm, volgens mij beseften we allebei niet 100% waar we onszelf instortten 

na het runnen van de beruchte Matlabcode ‘spam.m’ in maart 2004. Vooral in het 

eerste halfjaar van het onderzoek leken we soms meer op helpdeskmedewerkers, 

data-entrymedewerkers of programmeurs dan op onderzoekers. Doordat we bij 

elkaar op de kamer zaten, kennen we elkaar waarschijnlijk beter dan menig andere 

copromotor en AiO elkaar kennen. Ik heb erg genoten van de afgelopen jaren, 

vooral onze eindeloze discussies met een bakje Senseo erbij. Dank je wel dat je 

mijn kamergenoot, mentor en inspiratiebron wilde zijn, en ik hoop dat we in de 

toekomst nog eens samen kunnen werken.

De leden van de kleine promotiecommissie, prof.dr.ir. Burdorf, prof.dr. 

Stam en prof.dr. Smeets, wil ik graag bedanken voor hun tijd en moeite om mijn 

proefschrift te beoordelen. 

Veel dank gaat uit naar de deelnemers van de studie. Zonder jullie was dit 

proefschrift er niet geweest, bedankt dat we een blik mochten werpen in jullie 



 

189

dagelijkse werkzaamheden. Een extra bedankje voor de proefpersonen die bereid 

waren een dag lang met een heuptasje vol apparatuur en hun armen vol elektroden 

en draden rond te lopen.

I would like to thank the CBF and especially Svend Erik for inviting me 

to do research in Gävle, I thoroughly enjoyed my time there. Your dedication, 

knowledge and focus have been an inspiration to me on numerous occasions, and 

I am sure that our paper wouldn’t be half as famous-to-be without your guidance 

and input. Thank you as well for being prepared to take place in my defense com-

mittee, even though part of the reason might be because you ran out of fruithagel. 

Also, thanks to the rest of the CBF in Gävle and in Umeå, that gave me a 

warm Swedish welcome. I hope to see you all again, and Katarina, Mahmoud, 

David, Tanja: when we meet again, jag vill gärne något att dricka med ni!

Lex, bedankt voor het meedenken aan het proefschrift en ons gezamenlijke 

artikel. Het zal af en toe best lastig geweest zijn om je standpunt te verdedigen 

tegenover twee eigenwijze bewegingswetenschappers, maar het is je goed gelukt. 

We komen elkaar ongetwijfeld nog eens tegen bij een congres of een gezamenlijk 

project.

Jeroen, dank je voor je frisse onderzoeksblik, waarmee je onze goed door-

dachte grafieken en formules vaak tussen neus en lippen door neersabelde. Het 

proefschrift en onze gezamenlijke artikelen zijn er flink door verbeterd. En ondanks 

jouw succesvolle baan vind ik het toch  jammer dat jullie naar Amsterdam zijn 

gegaan; de kantoortuin is nooit meer zo gezellig geworden als toen.

Voor de werkplekmeting beschreven in Hoofdstuk 5 wil ik graag Hans 

Bussmann, Fabiënne Schasfoort, Dorinde Keijzer-Oster en Jorn Fierstra bedanken 

voor al hun hulp bij de metingen en voor de prettige samenwerking. Hopelijk 

kunnen we eens nog wat doen met de accelerometer-data!
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Ik wil de IT-afdeling van het Erasmus MC en in het bijzonder Bert van 

Ooijen bedanken voor de installatie van de RSI-Watcher binnen het Erasmus 

MC netwerk. Ook wil ik Tom van Dijk van 4U Solutions B.V. bedanken voor de 

ontwikkeling van de RSI-Watcher Scientific. Tenslotte bedank ik René van der 

Eijk van Synthesis B.V. voor het ontwikkelen van de nieuwe (kineos) software. 

Tine, we moesten in het begin allebei even loskomen toen jij en Frans 

plotseling bij ons op de kamer kwamen zitten, maar we groeiden al snel steeds 

verder naar elkaar toe, jij als extravert en ik als introvert. Super om een vriendin 

te hebben die in hetzelfde schuitje zat en waar het heerlijk mee kletsen was tijdens 

het theeleuten, maar ook tijdens het park hangen, het poolen of op wintersport 

(al kreeg ik bij dat laatste op een gegeven moment wel concurrentie ;). Ook al 

wonen we nu weer in andere steden en hebben we andere banen, ik weet zeker 

dat we vriendinnen blijven, en vind het heel fijn dat je mijn paranimf wilt zijn. 

Maartje, zuske, tot het eind van de middelbare school liepen onze levens 

ongeveer parallel, maar daarna zijn we hele andere richtingen op gegaan in ons 

leven. Vroeger wilde ik je altijd nadoen (sorry nog ;) en inmiddels heb ik mijn eigen 

pad gevonden, maar toch blijf je op een bepaalde manier een voorbeeld voor me. Ik 

ben blij dat je me als paranimf bij wil staan in de laatste fase van mijn onderzoek! 

Eelco, fijn dat je ons team een tijdje kwam versterken. Je kwam precies op 

het moment dat ik Matlab uit frustratie bijna wilde deïnstalleren. Misschien zien 

we elkaar nog eens nu ik weer in Utrecht woon én opeens weer vrije tijd heb! 

Maarten, Inger, Dieke, Bart, Beerend, Flip, Jos en de rest van de Frens-groep, 

Frans, Mark, Janine, Michiel, Durk, de Masters bij ons in de gang, de oude groep 

Smeets/Brenner en de rest van de afdeling neurowetenschappen: bedankt voor de 

gezelligheid op de 15e, 14e en 12e!

Het parttime werken bij de Fietsersbond heeft me erg goed gedaan, bedankt 

daarvoor, mensen, en vooral Miriam en Jaap. De heerlijke sfeer en nog heerlijkere 
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lunches zorgden voor de broodnodige afleiding en motivatie, die ik op dat moment 

wel kon gebruiken. 

Badmintonners, ik heb me zowel in Rotterdam als in Utrecht de afgelopen 

jaren heerlijk kunnen uitleven op het badmintonveld, bedankt en sorry voor de 

smashes!

Bedankt aan mijn lieve vrienden Ingel, Nijn, Han, Mrij, Monster, San, 

Teas, P, Ray, Didi, de rest van de KoKo-clan, en aan alle leuke mensen die ik in 

afgelopen jaren heb leren kennen, maar waar ik nog geen bijnaam voor heb. Ik 

ben blij dat ik jullie ken; zullen we als we groot zijn allemaal in dezelfde stad gaan 

wonen? Da’s wel zo makkelijk.

Maartje, Jeroen en mijn lieve nichtjes Britta, Fieke en Jet, bij jullie kon ik 

de proefschrift-stress altijd even helemaal van me af laten glijden, ik kom snel 

weer spelen.

Mijn ouders, van wie ik de ideale combinatie van nieuwsgierigheid en inte-

resse in gezondheidszorg heb meegekregen, waardoor ik dit onderzoek heb kun-

nen doen. Bedankt voor jullie zorgzaamheid, en de vrijheid die jullie me gegeven 

hebben om dingen zelf te ontdekken. O ja, pap, bedankt voor de P2000 en alle 

andere computers die je van school mee naar huis sleepte; het was vast de prille 

basis van dit proefschrift!

En last but certainly not least, Ralph. Toen ik je leerde kennen was ik al bezig 

met m’n proefschrift, en was jij aan het afstuderen. Inmiddels is er veel veranderd, 

al bleef dat proefschrift steeds een constante factor. In de laatste fase heb jij je er 

ook ingestort als opmaker, of moet ik dtp-er zeggen? Dat bleek meer werk dan we 

allebei dachten, maar hee, ik wilde natuurlijk alleen met de allerbeste werken. 

Dank je wel lieverd, voor alle steun, liefde en humor, samen kunnen we alles aan!






